【題目】如圖,在△ABC中,按以下步驟作圖:①分別以B,C為圓心,以大于BC的一半長(zhǎng)為半徑作弧,兩弧相交于兩點(diǎn)M,N;②作直線(xiàn)MN交AB于點(diǎn)D,連結(jié)CD,若AC=5,AB=11,則△ACD的周長(zhǎng)為( )

A.11
B.16
C.21
D.27

【答案】B
【解析】解:根據(jù)作圖可得MN是BC的垂直平分線(xiàn),

∵M(jìn)N是BC的垂直平分線(xiàn),

∴CD=DB,

∵AB=11,

∴CD+AD=11,

∴△ACD的周長(zhǎng)=CD+AD+AC=5+11=16,

所以答案是:B.

【考點(diǎn)精析】關(guān)于本題考查的線(xiàn)段垂直平分線(xiàn)的性質(zhì),需要了解垂直于一條線(xiàn)段并且平分這條線(xiàn)段的直線(xiàn)是這條線(xiàn)段的垂直平分線(xiàn);線(xiàn)段垂直平分線(xiàn)的性質(zhì)定理:線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)軸上,點(diǎn)A表示1,現(xiàn)將點(diǎn)A沿x軸做如下移動(dòng),第一次點(diǎn)A向左移動(dòng)3個(gè)單位長(zhǎng)度到達(dá)點(diǎn)A1 , 第二次將點(diǎn)A1向右移動(dòng)6個(gè)單位長(zhǎng)度到達(dá)點(diǎn)A2 , 第三次將點(diǎn)A2向左移動(dòng)9個(gè)單位長(zhǎng)度到達(dá)點(diǎn)A3 , 則A3表示的數(shù)是按照這種移動(dòng)規(guī)律移動(dòng)下去,第n次移動(dòng)到點(diǎn)AN , 如果點(diǎn)AN與原點(diǎn)的距離不小于20,那么n的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】金湖中學(xué)社團(tuán)活動(dòng)開(kāi)展地豐富多彩.七年級(jí)數(shù)學(xué)社團(tuán)課上同學(xué)們?cè)谔骄恳粩?shù)值轉(zhuǎn)換器,原理如圖所示.開(kāi)始輸入x值為5,可發(fā)現(xiàn)第一次輸出的結(jié)果是8,第2次輸出結(jié)果是4,依次下去,第2018次輸出的結(jié)果是__.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,E、F是四邊形ABCD的對(duì)角線(xiàn)AC上的兩點(diǎn),AF=CE,DF=BE,DFBE

求證:(1)AFD≌△CEB.(2)四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD對(duì)角線(xiàn)交于點(diǎn)OBEAC,AEBD,EOAB交于點(diǎn)F

(1)求證:EODC;

(2)若菱形ABCD的邊長(zhǎng)為10,∠EBA=60°,求:菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點(diǎn),E、F分別是線(xiàn)段BM、CM的中點(diǎn)

(1)求證:ABM≌△DCM

(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;

(3)當(dāng)AD:AB= _時(shí),四邊形MENF是正方形(只寫(xiě)結(jié)論,不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)在一樓與二樓之間裝有一部自動(dòng)扶梯,以均勻的速度向上行駛,一男孩與一女孩同時(shí)從自動(dòng)扶梯上走到二樓(扶梯本身也在行駛).如果二人都做勻速運(yùn)動(dòng),且男孩每分鐘走動(dòng)的級(jí)數(shù)是女孩的兩倍.又已知男孩走了27級(jí)到達(dá)頂部,女孩走了18級(jí)到達(dá)頂部(二人每步都只跨1級(jí)).求扶梯有多少級(jí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)習(xí)三角形中位線(xiàn)的性質(zhì)時(shí),小亮對(duì)課本給出的解決辦法進(jìn)行了認(rèn)真思考:

課本研究三角形中位線(xiàn)性質(zhì)的方法
已知:如圖①,已知△ABC中,D,E分別是AB,AC兩邊中點(diǎn).求證:DE∥BC,DE= BC.
證明:延長(zhǎng)DE至點(diǎn)F,使EF=DE,連接FC.…則△ADE≌△CFE.∴…



請(qǐng)你利用小亮的發(fā)現(xiàn)解決下列問(wèn)題:
(1)如圖③,AD是△ABC的中線(xiàn),BE交AC于點(diǎn)E,交AD于點(diǎn)F,且AE=EF,求證:AC=BF.
請(qǐng)你幫助小亮寫(xiě)出輔助線(xiàn)作法并完成論證過(guò)程:
(2)解決問(wèn)題:如圖⑤,在△ABC中,∠B=45°,AB=10,BC=8,DE是△ABC的中位線(xiàn).過(guò)點(diǎn)D,E作DF∥EG,分別交BC于點(diǎn)F,G,過(guò)點(diǎn)A作MN∥BC,分別與FD,GE的延長(zhǎng)線(xiàn)交于點(diǎn)M,N,則四邊形MFGN周長(zhǎng)的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的三邊長(zhǎng)分別為a,b,c,下列條件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④abc=5:12:13,其中能判斷△ABC是直角三角形的個(gè)數(shù)有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案