問(wèn)題:已知線段AB、CD相交于點(diǎn)O,AB=CD.連接AD、BC,請(qǐng)?zhí)砑右粋(gè)條件,使得△AOD≌△COB.
小明的做法及思路
小明添加了條件:∠DAB=∠BCD.他的思路是:分兩種情況畫圖①、圖②,在兩幅圖中,

都作直線DA、BC,兩直線交于點(diǎn)E.
由∠DAB=∠BCD,可得∠EAB=∠ECD.
∵AB=CD,∠E=∠E,
∴△EAB≌△ECD.∴EB=ED,EA=EC.
圖①中ED-EA=EB-EC,即AD=CB.
圖②中EA-ED=EC-EB,即AD=CB.
又∵∠DAB=∠BCD,∠AOD=∠COB,
∴△AOD≌△COB.
數(shù)學(xué)老師的觀點(diǎn):
(1)數(shù)學(xué)老師說(shuō):小明添加的條件是錯(cuò)誤的,請(qǐng)你給出解釋.
你的想法:
(2)請(qǐng)你重新添加一個(gè)滿足問(wèn)題要求的條件
,并說(shuō)明理由.
(1)可畫出下面的反例:圖中,AB=CD,DA∥BC.此時(shí),雖有∠A=∠C,但△AOD與△COB不全等;(2)答案不唯一,如OA=OC.

試題分析:根據(jù)全等三角形的判定結(jié)合圖形的特征求解即可.
(1)可畫出下面的反例:
圖中,AB=CD,DA∥BC.
此時(shí),雖有∠A=∠C,但△AOD與△COB不全等;
(2)答案不唯一,如OA=OC.
理由如下:
∵AB=CD,OA=OC,
∴AB-OA=CD-OC,即OB=OD.
∵∠AOD=∠COB,
∴△AOD≌△COB.
點(diǎn)評(píng):全等三角形的判定和性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見(jiàn)的知識(shí)點(diǎn),一般難度不大,需熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:已知在中,邊的中點(diǎn),過(guò)點(diǎn),垂足分別為

(1)求證:DE=DF;
(2)若,BE=1,求的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,點(diǎn)A、點(diǎn)D在直線BC兩側(cè),AB⊥BC,CD⊥BC,垂足分別是B、C,AB=2,BC=4,CD=1,則線段AD的長(zhǎng)為       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,在△ABC中,∠ABC=90º,BD⊥AC于點(diǎn)D,點(diǎn)E在BC的延長(zhǎng)線上,且BE=AB,過(guò)點(diǎn)E作EF⊥BE,與BD的延長(zhǎng)線交于點(diǎn)F.求證:BC="EF" . 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一副直角三角板如圖放置,點(diǎn)C在FD的延長(zhǎng)線上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,試求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在下列各圖的△ABC中,正確畫出AC邊上的高的圖形是()

A.                       B.               C.              D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在RtABC中,,D為邊CA延長(zhǎng)線上一點(diǎn),DE//AB,ADE=42,則B的大小為
A.42.B.45.C.48.D.58.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一副三角板疊在一起如圖放置,那么∠AOB為      度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,在網(wǎng)格上的三角形中,點(diǎn)B到AC的距離是          .

查看答案和解析>>

同步練習(xí)冊(cè)答案