(2002•南京)如圖,AB是⊙O的直徑,弦CD⊥AB,垂足是G,F(xiàn)是CG的中點,延長AF交⊙O于E,CF=2,AF=3,則EF的長是   
【答案】分析:根據(jù)相交弦定理及垂徑定理求解.
解答:解:∵AB是⊙O的直徑,弦CD⊥AB,垂足是G,F(xiàn)是CG的中點,
∴CG=GD,CF=FG=CG,
∵CF=2,∴CG=GD=2×2=4,F(xiàn)D=2+4=6,
由相交弦定理得EF•AF=CF•FD,
即EF===4,
故EF的長是4.
點評:此題很簡單,解答此題的關鍵是熟知相交弦定理及垂徑定理.
相交弦定理:圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等;
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《一元二次方程》(05)(解析版) 題型:解答題

(2002•南京)如圖,客輪沿折線A─B─C從A出發(fā)經(jīng)B再到C勻速航行,貨輪從AC的中點D出發(fā)沿某一方向勻速直線航行,將一批物品送達客輪,兩船同時起航,并同時到達折線A─B─C上的某點E處,已知AB=BC=200海里,∠ABC=90°,客輪速度是貨輪速度的2倍.
(1)選擇:兩船相遇之處E點( )
A、在線段AB上;B、在線段BC上;C、可以在線段AB上,也可以在線段BC上.
(2)求貨輪從出發(fā)到兩船相遇共航行了多少海里?

查看答案和解析>>

科目:初中數(shù)學 來源:2002年江蘇省南京市中考數(shù)學試卷(解析版) 題型:解答題

(2002•南京)如圖,在正方形ABCD中,點E、F分別是AD,BC的中點.
求證:(1)△ABE≌△CDF;
(2)四邊形BFDE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年江蘇省南京市中考數(shù)學試卷(解析版) 題型:填空題

(2002•南京)如圖,AB是⊙O的直徑,弦CD⊥AB,垂足是G,F(xiàn)是CG的中點,延長AF交⊙O于E,CF=2,AF=3,則EF的長是   

查看答案和解析>>

科目:初中數(shù)學 來源:2002年江蘇省南京市中考數(shù)學試卷(解析版) 題型:選擇題

(2002•南京)如圖,正六邊形ABCDEF的邊長為a,分別以C,F(xiàn)為圓心,a為半徑畫弧,則圖中的陰影部分的面積是( )

A.πa2
B.πa2
C.πa2
D.πa2

查看答案和解析>>

同步練習冊答案