(2011•化州市二模)如圖,點O是△ABC的內(nèi)切圓的圓心,∠BAC=80°,求∠BOC的度數(shù).

【答案】分析:運用三角形內(nèi)角和定理得出∠ABC+∠ACB的度數(shù),再根據(jù)點O是△ABC的內(nèi)切圓的圓心,得出∠OBC+∠OCB=50°,從而得出答案.
解答:解:∵∠BAC=80°,
∴∠ABC+∠ACB=180°-80°=100°,
∵點O是△ABC的內(nèi)切圓的圓心,
∴BO,CO分別為∠ABC,∠BCA的角平分線,
∴∠OBC+∠OCB=50°,
∴∠BOC=130°.
點評:此題主要考查了三角形的內(nèi)切圓與內(nèi)心,準(zhǔn)確運用三角形內(nèi)心的性質(zhì),是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年廣東省茂名市化州市中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2011•化州市二模)如圖在平面直角坐標(biāo)系xoy中,正方形OABC的邊長為2厘米,點A、C分別在y軸的負(fù)半軸和x軸的正半軸上.拋物線y=ax2+bx+c經(jīng)過點A,B和點D(4,
(1)求拋物線的解析式;
(2)如果點P由點A開始沿AB邊以2厘米/秒的速度向點B移動,同時點Q由B點開始沿BC邊以1厘米/秒的速度向點C移動.若P、Q中有一點到達終點,則另一點也停止運動,設(shè)P、Q兩點移動的時間為t秒,S=PQ2(厘米2)寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍,當(dāng)t為何值時,S最。
(3)當(dāng)s取最小值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出點R的坐標(biāo);如果不存在,請說明理由.
(4)在拋物線的對稱軸上求出點M,使得M到D,A距離之差最大?寫出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年廣東省茂名市化州市中考數(shù)學(xué)二模試卷(解析版) 題型:填空題

(2011•化州市二模)拋物線開口向下,則a=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年浙江省杭州市中考數(shù)學(xué)模擬試卷(37)(解析版) 題型:解答題

(2011•化州市二模)如圖在平面直角坐標(biāo)系xoy中,正方形OABC的邊長為2厘米,點A、C分別在y軸的負(fù)半軸和x軸的正半軸上.拋物線y=ax2+bx+c經(jīng)過點A,B和點D(4,
(1)求拋物線的解析式;
(2)如果點P由點A開始沿AB邊以2厘米/秒的速度向點B移動,同時點Q由B點開始沿BC邊以1厘米/秒的速度向點C移動.若P、Q中有一點到達終點,則另一點也停止運動,設(shè)P、Q兩點移動的時間為t秒,S=PQ2(厘米2)寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍,當(dāng)t為何值時,S最;
(3)當(dāng)s取最小值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出點R的坐標(biāo);如果不存在,請說明理由.
(4)在拋物線的對稱軸上求出點M,使得M到D,A距離之差最大?寫出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年浙江省杭州市中考數(shù)學(xué)模擬試卷(37)(解析版) 題型:解答題

(2011•化州市二模)如圖,點O是△ABC的內(nèi)切圓的圓心,∠BAC=80°,求∠BOC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案