【題目】如圖,在等腰△ABC中,AB=AC,tan∠CAB=,AD=AB,AH⊥BD于點H,連接CD交AH于點E,連接BE,BE=,則BD的長為_____.
【答案】4.
【解析】
過點C作CF⊥AB于F,由三角函數(shù)得出tan∠CAB=,設(shè)CF=4a,AF=3a,由勾股定理得出AC=5a,得出BF=AB﹣AF=2a,由勾股定理得出BC==2a,得出sin∠CBF=,證出點BD關(guān)于AH對稱,AC=AD,DH=BH,得出∠ABD=∠ADB,∠ABE=∠ADE,∠DEH=∠BEH,∠ADC=∠ACD,得出∠ACD=∠ABE,證出A、E、B、C四點共圓,由圓周角定理得出∠ABC=∠AEC,證出∠CBF=∠BEH,得出sin∠BEH=,即可得出答案.
解:過點C作CF⊥AB于F,如圖所示:
∴tan∠CAB=,
設(shè)CF=4a,AF=3a,
AC==5a,
∵AB=AC,
∴BF=AB﹣AF=5a﹣3a=2a,
在Rt△BDF中,
BC==2a,
∴sin∠CBF=,
∵AB=AD,AH⊥BD,
∴點BD關(guān)于AH對稱,AC=AD,DH=BH,
∴∠ABD=∠ADB,∠ABE=∠ADE,∠DEH=∠BEH,∠ADC=∠ACD,
∴∠ACD=∠ABE,
∴A、E、B、C四點共圓,
∴∠ABC=∠AEC,
∵∠AEC=∠DEH,∠DEH=∠BEH,
∴∠ABC=∠BEH,即∠CBF=∠BEH,
∴sin∠BEH=,
∵BE=,
∴,
∴BH=2,
∴BD=2BH=4,
故答案為:4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解班級學(xué)生數(shù)學(xué)課前預(yù)習(xí)的具體情況,鄭老師對本班部分學(xué)生進行了為期一個月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類:A:很好;B:較好;C:一般;D:不達標,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)C類女生有 名,D類男生有 名,將上面條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中“課前預(yù)習(xí)不達標”對應(yīng)的圓心角度數(shù)是 ;
(3)為了共同進步,鄭老師想從被調(diào)查的A類和D類學(xué)生中各隨機機抽取一位同學(xué)進行“一幫一”互助學(xué)習(xí),請用畫樹狀圖或列表的方法求出所選兩位同學(xué)恰好是一男一女同學(xué)的概率,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點F在邊BC上,過點F作EF⊥BC,且FE=FC(CE<CB),連接CE、AE,點G是AE的中點,連接FG.
(1)用等式表示線段BF與FG的數(shù)量關(guān)系是 ;
(2)將圖1中的△CEF繞點C按逆時針旋轉(zhuǎn),使△CEF的頂點F恰好在正方形ABCD的對角線AC上,點G仍是AE的中點,連接FG、DF.
①在圖2中,依據(jù)題意補全圖形;
②求證:DF=FG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(感知)小亮遇到了這樣一道題:已知如圖在中,在上,在的延長上,交于點,且,求證:.
小亮仔細分析了題中的已知條件后,如圖②過點作交于,進而解決了該問題.(不需要證明)
(探究)如圖③,在四邊形中,,為邊的中點,與的延長線交于點,試探究線段與之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(應(yīng)用)如圖③,在正方形中,為邊的中點,、分別為,邊上的點,若=1,=,∠=90°,則的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,直線AB交x軸于點A,交y軸于點B,AB=,tan∠BAO=3.
(1)求直線AB的解析式;
(2)直線y=kx+b經(jīng)過點B交x軸交于點C,且∠ABC=45°,AD⊥BC于點D.動點P從點C出發(fā),沿CB方向以每秒個單位長度的速度向終點B運動,運動時間為t,設(shè)△ADP的面積為S,求S與t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍.
(3)在(2)的條件下,點P在線段BD上,點F在線段AB上,∠APC=∠FPB,連接AP,過點F作FG⊥AP于點G,交AD于點H,若DP=DH,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,拋物線的頂點為M:平行于x軸的直線與該拋物線交于點A,B(點A在點B左側(cè)),根據(jù)對稱性△AMB恒為等腰三角形,我們規(guī)定:當(dāng)△AMB為直角三角形時,就稱△AMB為該拋物線的“完美三角形”.
(1)如圖2,求出拋物線y=x2的“完美三角形”斜邊AB的長;
(2)若拋物線y=ax2+4的“完美三角形”的斜邊長為4,求a的值;
(3)若拋物線y=mx2+2x+n﹣5的“完美三角形”斜邊長為n,且y=mx2+2x+n﹣5的最大值為﹣1,求m,n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)報名參加校運動會,有以下5個項目可供選擇:徑賽項目:100m,200m,分別用、、表示;田賽項目:跳遠,跳高分別用、表示.
該同學(xué)從5個項目中任選一個,恰好是田賽項目的概率為______;
該同學(xué)從5個項目中任選兩個,利用樹狀圖或表格列舉出所有可能出現(xiàn)的結(jié)果,并求恰好是一個田賽項目和一個徑賽項目的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com