【題目】(1)課本情境:如圖,已知矩形AOBC,AB=6cm,BC=16cm,動點P從點A出發(fā),以3cm/s的速度向點O運動,直到點O為止;動點Q同時從點C出發(fā),以2cm/s的速度向點B運動,與點P同時結束運動,出發(fā) 時,點P和點Q之間的距離是10cm;
(2)逆向發(fā)散:當運動時間為2s時,P,Q兩點的距離為多少?當運動時間為4s時,P,Q兩點的距離為多少?
(3)拓展應用:若點P沿著AO→OC→CB移動,點P,Q分別從A,C同時出發(fā),點Q從點C移動到點B停止時,點P隨點Q的停止而停止移動,求經過多長時間△POQ的面積為12cm2?
【答案】(1)或 (2); (3)或
【解析】
(1)過點P作PE⊥BC于E,得到AP=3t,CQ=2t,PE=6,EQ=16﹣3t﹣2t=16﹣5t,利用勾股定理得到方程,故可求解;
(2)根據運動時間求出EQ、PE,利用勾股定理即可求解;
(3) 分當點P在AO上時,當點P在OC上時和當點P在CB上時,根據三角形的面積公式列出方程即可求解.
解:(1)設運動時間為t秒時,如圖,過點P作PE⊥BC于E,
由運動知,AP=3t,CQ=2t,PE=6,EQ=16﹣3t﹣2t=16﹣5t,
∵點P和點Q之間的距離是10 cm,
∴62+(16﹣5t)2=100,
解得t1=,t2=,
∴t=或.
故答案為或
(2)t=2時,由運動知AP=3×2=6 cm,CQ=2×2=4 cm,
∴四邊形APEB是矩形,
∴PE=AB=6,BE=6,
∴EQ=BC﹣BE﹣CQ=16﹣6﹣4=6,
根據勾股定理得PQ=,
∴當t=2 s時,P,Q兩點的距離為6 cm;
當t=4 s時,由運動知AP=3×4=12 cm,CQ=2×4=8cm,
∴四邊形APEB是矩形,
∴PE=AB=6,BQ=8,CE=OP=4
∴EQ
根據勾股定理得PQ=,
P,Q兩點的距離為2cm.
(3)點Q從C點移動到B點所花的時間為16÷2=8s,
當點P在AO上時,S△POQ===12,
解得t=4.
當點P在OC上時,S△POQ===12,
解得t=6或﹣(舍棄).
當點P在CB上時,S△POQ===12,
解得t=18>8(不符合題意舍棄),
綜上所述,經過4 s或6 s時,△POQ的面積為12 cm2.
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,AD=,E是CD邊上的中點,P是BC邊上的一點,且BP=2CP,連接EP并延長交AB的延長線于點F.
(1)求BF;
(2)判斷EB是否平分∠AEC,并說明理由;
(3)連接AP,不添加輔助線,試證明△AEP≌△FBP,直接寫出一種經過兩次變換的方法使得△AEP與△FBP重合.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了做好開學準備,某校共購買了20桶A、B兩種桶裝消毒液,進行校園消殺,以備開學.已知A種消毒液300元/桶,每桶可供2 000米2的面積進行消殺,B種消毒液200元/桶,每桶可供1 000米2的面積進行消殺.
(1)設購買了A種消毒液x桶,購買消毒液的費用為y元,寫出y與x之間的關系式,并指出自變量x的取值范圍;
(2)在現(xiàn)有資金不超過5 300元的情況下,求可消殺的最大面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了了解本校學生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,課題小組隨機選取該校部分學生進行了問卷調査(問卷調査表如圖1所示),并根據調查結果繪制了圖2、圖3兩幅統(tǒng)計圖(均不完整),請根據統(tǒng)計圖解答下列問題.
(1)本次接受問卷調查的學生有________名.
(2)補全條形統(tǒng)計圖.
(3)扇形統(tǒng)計圖中B類節(jié)目對應扇形的圓心角的度數為________.
(4)該校共有2000名學生,根據調查結果估計該校最喜愛新聞節(jié)目的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,O是正方形ABCD邊上一點,以O為圓心,OB為半徑畫圓與AD交于點E,過點E作⊙O的切線交CD于F,將△DEF沿EF對折,點D的對稱點D'恰好落在⊙O上.若AB=6,則OB的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】完全平方公式是初中數學的重要公式之一:,完全平方公式既可以用來進行整式計算又可以用來進行分解因式,在學習中芳芳同學發(fā)現(xiàn)也可以用完全平方公式進行分解因式,;根據以上發(fā)現(xiàn)解決問題
(1)寫出一個上面相同的式子,并進行分解因式;
(2)若,請用,表示,
(3)如圖在中,,,,延長至點,使,求的長(參考上面提供的方法把結果進行化簡)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了考查學生的綜合素質,某市決定:九年級畢業(yè)生統(tǒng)一參加中考實驗操作考試,根據今年的實際情況,中考實驗操作考試科目為:(物理)、(化學)、(生物),每科試題各為道,考生隨機抽取其中道進行考試.小明和小麗是某校九年級學生,需參加實驗考試.
(1)小明抽到化學實驗的概率為 ;
(2)若只從考試科目考慮,小明和小麗抽到不同科目的概率為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】商場銷售一批襯衫,每天可售出20件,每件盈利40元,為了擴大銷售,減少庫存,決定采取適當的降價措施,經調查發(fā)現(xiàn),如果一件襯衫每降價1元,每天可多售出2件.
(1)若商場每天要盈利1200元,每件應降價多少元?
(2)設每件降價x元,每天盈利y元,每件降價多少元時,商場每天的盈利達到最大?盈利最大是多少元?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com