【題目】四邊形是正方形,將線段繞點逆時針旋轉,得到線段,連接,過點的延長線于,連接

1)依題意補全圖1;

2)直接寫出的度數(shù);

3)連接,用等式表示線段的數(shù)量關系,并證明.

【答案】1)見解析;(2;(3,理由見解析

【解析】

1)按照題中的表述畫出圖形即可;
2)由題意可知,CD=CE=CB,∠ECD=2α,∠ABC=BCD=CDA=DAB=90°,根據(jù)題中角度關系推理即可;
3)作AHAF,交BF的延長線于點H,先通過條件證明△HAB≌△FAD,可得HB=FD,AH=AF,HF=DE,∠H=45°,從而知道HFAF的數(shù)量關系,即可得線段AFDE的數(shù)量關系.

解:(1)補全圖形,如圖所示.

2,

DFAB交于點G,如圖所示:

由題意得,CD=CE=CB,∠ECD=2α,∠ABC=BCD=CDA=DAB=90°,
∴∠EDC=90°-α,∠BCE=90°-2α,
∴∠CBE=45°+α,∠ADF=α,
∴∠ABE=45°-α
BFDE,
∴∠BFD=90°
∵∠AGD=FGB,
∴∠FBG=α
∴∠FBE=FEB=45°;

3

證明:如圖,作,交的延長線于點,設交于點,

根據(jù)題意可知,

,

,

,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△OAB的邊OBx軸的正半軸上,AOABM是邊AB的中點,經(jīng)過點M的反比例函數(shù)yk0x0)的圖象與邊OA交于點C,則的值為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,對角線AC、BD相交于點O,E是邊AB上的一個動點(不與A、B重合),連接EO并延長,交CD于點F,連接AF,CE,下列四個結論中:

①對于動點E,四邊形AECF始終是平行四邊形;

②若∠ABC90°,則至少存在一個點E,使得四邊形AECF是矩形;

③若ABAD,則至少存在一個點E,使得四邊形AECF是菱形;

④若∠BAC45°,則至少存在一個點E,使得四邊形AECF是正方形.

以上所有正確說法的序號是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax22ax

1)二次函數(shù)圖象的對稱軸是直線x   ;

2)當0≤x≤3時,y的最大值與最小值的差為4,求該二次函數(shù)的表達式;

3)若a0,對于二次函數(shù)圖象上的兩點Px1y1),Qx2,y2),當tx1t+1x2≥3時,均滿足y1y2,請結合函數(shù)圖象,直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先進制造業(yè)城市發(fā)展指數(shù)是反映一個城市先進制造水平的綜合指數(shù).對2019年我國先進制造業(yè)城市發(fā)展指數(shù)得分排名位居前列的30個城市的有關數(shù)據(jù)進行收集、整理、描述和分析.下面給出了部分信息:

a.先進制造業(yè)城市發(fā)展指數(shù)得分的頻數(shù)分布直方圖(數(shù)據(jù)分成6組:):

b.先進制造業(yè)城市發(fā)展指數(shù)得分在這一組的是:71.1 75.7 79.9

c30個城市的2019年快遞業(yè)務量累計和先進制造業(yè)城市發(fā)展指數(shù)得分情況統(tǒng)計圖:

d.北京的先進制造業(yè)城市發(fā)展指數(shù)得分為79.9

根據(jù)以上信息,回答下列問題:

1)在這30個城市中,北京的先進制造業(yè)城市發(fā)展指數(shù)排名第

2)在30個城市的快遞業(yè)務量累計和先進制造業(yè)城市發(fā)展指數(shù)得分情況統(tǒng)計圖中,包括北京在內的少數(shù)幾個城市所對應的點位于虛線的上方.請在圖中用“○”圈出代表北京的點;

3)在這30個城市中,先進制造業(yè)城市發(fā)展指數(shù)得分高于北京的城市的快遞業(yè)務量累計的最小值約為_______億件.(結果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC是等邊三角形,點D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF,CF,連接BE并延長交CF于點G.下列結論:

①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,則GF=2EG.其中正確的結論是 .(填寫所有正確結論的序號)

【答案】①②③④.

【解析】

試題分析:△ABC是等邊三角形,可得AB=AC=BC,∠BAC=∠ACB=60°,再因DE=DC,可判定△DEC是等邊三角形,所以ED=EC=DC,∠DEC=∠AEF=60°,

EF=AE,所以△AEF是等邊三角形,所以AF=AE,∠EAF=60°,在△ABE和△ACF中,AB=AC,BAE=CAF,AE=AF ,可判定△ABE≌△ACF,故①正確.②∠ABC=∠FDC,可得AB∥DF,再因∠EAF=∠ACB=60°,可得AB∥AF,即可判定四邊形ABDF是平行四邊形,所以DF=AB=BC,故②正確.③△ABE≌△ACF可得BE=CF,S△ABE=S△AFC,在△BCE和△FDC中,BC=DF,CE=CD,BE=CF ,可判定△BCE≌△FDC,所以S△BCE=S△FDC即可得S△ABC=S△ABE+S△BCE=S△ACF+S△BCE=S△ABC=S△ACF+S△DCF,故③正確.④△BCE≌△FDC,可得∠DBE=∠EFG,再由∠BED=∠FEG可判定△BDE∽△FGE,所以==,又因BD=2DC,DC=DE,可得=2,FG=2EG.故④正確.

考點:三角形綜合題.

型】填空
束】
19

【題目】先化簡,再求值:(a+1-)÷(),其中a=2+.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,A,B兩個頂點在x軸上方,點C的坐標是(1,0),以點C為位似中心,在x軸的下方作△ABC的位似圖形,并把△ABC的邊長放大到原來的2倍,得到△A'B'C',設點B的對應點B'的橫坐標為2,則點B的橫坐標為(  )

A.1B.C.2D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AB=AC,AC交⊙O于點E,BC交⊙O于點D,FCE的中點,連接DF.則下列結論錯誤的是

A.A=ABEB.

C.BD=DCD.DF是⊙O的切線

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC和△DEF是兩個全等的等腰直角三角形,∠BAC=EDF=90°,△EDF的頂點E與△ABC的斜邊BC的中點重合,將△DEF繞點E旋轉,旋轉過程中,線段DE與線段AB相交于點P,線段EF與射線CA相交于點Q

1)如圖,當點Q在線段AC上,且AP=AQ時,求證:△BPE≌△CQE;

2)如圖,當點Q在線段CA的延長線上時,求證:△BPE∽△CEQ

3)在(2)的條件下,BP=2,CQ=9,則BC的長為_______

查看答案和解析>>

同步練習冊答案