分析 如圖,首先求出正方形的邊長(zhǎng)、對(duì)角線長(zhǎng);進(jìn)而求出OA′的長(zhǎng);證明△A′MN為等腰直角三角形,求出A′N的長(zhǎng)度;同理求出D′M′的長(zhǎng)度,即可解決問(wèn)題.
解答 解:如圖,由題意得:
正方形ABCD的邊長(zhǎng)為2,
∴該正方形的對(duì)角線長(zhǎng)為2$\sqrt{2}$,
∴OA′=$\sqrt{2}$;而OM=1,
∴A′M=$\sqrt{2}$-1;
由題意得:∠MA′N=45°,∠A′MN=90°,
∴∠MNA′=45°,
∴MN=A′M=$\sqrt{2}$-1;
由勾股定理得:A′N=2-$\sqrt{2}$;
同理可求D′M′=2-$\sqrt{2}$,
∴NM'=2-(4-2$\sqrt{2}$)=2$\sqrt{2}$-2,
∴正八邊形的邊長(zhǎng)為2$\sqrt{2}$-2,
∴正八邊形的周長(zhǎng)=(2$\sqrt{2}$-2)×8=16$\sqrt{2}$-16.
故答案為:16$\sqrt{2}$-16.
點(diǎn)評(píng) 該題主要考查了旋轉(zhuǎn)變換的性質(zhì)、正方形的性質(zhì)、勾股定理等幾何知識(shí)點(diǎn)及其應(yīng)用;應(yīng)牢固掌握旋轉(zhuǎn)變換的性質(zhì)、正方形的性質(zhì)等幾何知識(shí)點(diǎn),這是靈活運(yùn)用、解題的基礎(chǔ)和關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
x | … | -2 | -1 | 0 | 1 | 2 | … |
y | … | 10 | 8 | 6 | 4 | 2 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com