如圖,AB經(jīng)過⊙O上的點C,且OA=OB,CA=CB,⊙O分別與OA、OB的交點D、E恰好是OA、OB的中點,EF切⊙O于點E,交AB于點F.
(1)求證:AB是⊙O的切線;
(2)若∠A=30°,⊙O的半徑為2,求DF的長.
科目:初中數(shù)學(xué) 來源: 題型:
端午節(jié)期間,某!按壬菩〗M”籌集善款600元,全部用于購買粽子到福利院送給老人.購買大棗粽子和豆沙粽子各花300元,已知大棗粽子比豆沙粽子每盒貴5元,結(jié)果購買的大棗粽子比豆沙粽子少2盒.請求出兩種口味的粽子每盒各多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,點P是以O為圓心, AB為直徑的半圓的中點,AB=2,等腰直角三角板45°角的頂點與點P重合, 當(dāng)此三角板繞點P旋轉(zhuǎn)時,它的斜邊和直角邊所在的直線與直徑AB分別相交于C、D兩點.設(shè)線段AD的長為,線段BC的長為,則下列圖象中,能表示與的函數(shù)關(guān)系的圖象大致是
A B C D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
對于平面直角坐標(biāo)系 xOy中的點P(a,b),若點的坐標(biāo)為(,)(其中k為常數(shù),且),則稱點為點P的“k屬派生點”.
例如:P(1,4)的“2屬派生點”為(1+,),即(3,6).
(1)①點P(-1,-2)的“2屬派生點”的坐標(biāo)為____________;
②若點P的“k屬派生點” 的坐標(biāo)為(3,3),請寫出一個符合條件的點P的坐標(biāo)____________;
(2)若點P在x軸的正半軸上,點P的“k屬派生點”為點,且△為等腰直角三角形,則k的值為____________;
(3)如圖, 點Q的坐標(biāo)為(0,),點A在函數(shù)()的圖象上,且點A是點B的“屬派生點”,當(dāng)線段B Q最短時,求B點坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com