【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)E是邊CD上一點(diǎn),且BC=EC,CF⊥BE交AB于點(diǎn)F,P是EB延長線上一點(diǎn),下列結(jié)論:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,其中正確結(jié)論的個(gè)數(shù)為( )
A. 1 B. 2 C. 3 D. 4
【答案】D
【解析】利用平行線的性質(zhì)結(jié)合線段垂直平分線的性質(zhì)以及等腰三角形的性質(zhì)分別判斷得出:
∵BC=EC,
∴∠CEB=∠CBE,
∵四邊形ABCD是平行四邊形,
∴DC∥AB,
∴∠CEB=∠EBF,
∴∠CBE=∠EBF,
∴①BE平分∠CBF,正確;
∵BC=EC,CF⊥BE,
∴∠ECF=∠BCF,
∴②CF平分∠DCB,正確;
∵DC∥AB,
∴∠DCF=∠CFB,
∵∠ECF=∠BCF,
∴∠CFB=∠BCF,
∴BF=BC,
∴③正確;
∵FB=BC,CF⊥BE,
∴B點(diǎn)一定在FC的垂直平分線上,即PB垂直平分FC,
∴PF=PC,故④正確.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題: 油桶制造廠的某車間主要負(fù)責(zé)生產(chǎn)制造油桶用的圓形鐵片和長方形鐵片,該車間有工人42人,每個(gè)工人平均每小時(shí)可以生產(chǎn)圓形鐵片120片或者長方形鐵片80片.如圖,一個(gè)油桶由兩個(gè)圓形鐵片和一個(gè)長方形鐵片相配套.生產(chǎn)圓形鐵片和長方形鐵片的工人各為多少人時(shí),才能使生產(chǎn)的鐵片恰好配套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】抗擊肺炎期間,小明準(zhǔn)備借助網(wǎng)絡(luò)評價(jià)選取一家店鋪,購置防護(hù)用品.他先后選取三家店鋪,對每家店鋪隨機(jī)選取了1000條網(wǎng)絡(luò)評價(jià),統(tǒng)計(jì)結(jié)果如下:
一星 | 二星 | 三星 | 四星 | 五星 | 合計(jì) | |
甲 | 93 | 30 | 54 | 338 | 485 | 1000 |
乙 | 80 | 56 | 69 | 340 | 455 | 1000 |
丙 | 92 | 128 | 125 | 155 | 500 | 1000 |
小明選擇在_____(填“甲”“乙”“丙”)店鋪購買防護(hù)用品,能獲得良好的購物體驗(yàn)(即評價(jià)不低于四星)的可能性最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格線的交點(diǎn)叫格點(diǎn),格點(diǎn)P是∠AOB的邊OB上的一點(diǎn)(請利用網(wǎng)格作圖,保留作圖痕跡).
(1)過點(diǎn)P畫OB的垂線,交OA于點(diǎn)C;
(2)線段的長度是點(diǎn)O到PC的距離;
(3)PC<OC的理由是;
(4)過點(diǎn)C畫OB的平行線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】唐代大詩人李白喜好飲酒作詩,民間有“李白斗酒詩百篇”之說.《算法統(tǒng)宗》中記載了一個(gè)“李白沽酒”的故事.詩云: 今攜一壺酒,游春郊外走.逢朋加一倍,入店飲半斗.相逢三處店,飲盡壺中酒.試問能算士:如何知原有.
注:古代一斗是10升.
大意是:李白在郊外春游時(shí),做出這樣一條約定:遇見朋友,先到酒店里將壺里的酒增加一倍,再喝掉其中的5升酒.按照這樣的約定,在第3個(gè)店里遇到朋友正好喝光了壺中的酒.
(1)列方程求壺中原有多少升酒;
(2)設(shè)壺中原有a0升酒,在第n個(gè)店飲酒后壺中余an升酒,如第一次飲后所余酒為a1=2a0﹣5(升),第二次飲后所余酒為a2=2a1﹣5=22a0﹣(22﹣1)×5(升),… 用含an﹣1的式子表示an= , 再用含a0和n的式子表示an=;
(3)按照這個(gè)約定,如果在第4個(gè)店喝光了壺中酒,請借助①中的結(jié)論求壺中原有多少升酒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)y=kx+b的圖象與x軸、y軸分別交于點(diǎn)A、B,與函數(shù)y=x的圖象交于點(diǎn)M,點(diǎn)A的坐標(biāo)為(6,0),點(diǎn)M的橫坐標(biāo)為2,過點(diǎn)P(a,0),作x軸的垂線,分別交函數(shù)y=kx+b和y=x的圖象于點(diǎn)C、D.
(1)求函數(shù)y=kx+b的表達(dá)式;
(2)若點(diǎn)M是線段OD的中點(diǎn),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若△ABC∽△A′B′C′,相似比為1:2,則△ABC與△A′B′C′的面積的比為( 。
A.1:2
B.2:1
C.1:4
D.4:1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com