如圖,已知雙曲線經(jīng)過點M,它關(guān)于y軸對稱的雙曲線為.
(1)求雙曲線的解析式;
(2)若平行于軸的直線交雙曲線于點A,交雙曲線于點B,在軸上存在點P,使以點A,B,O,P為頂點的四邊形是菱形,求點P的坐標(biāo).

(1) ;
(2)滿足要求的點P有兩個:

解析試題分析:(1)根據(jù)M點的坐標(biāo)求出的解析式,根據(jù)對稱性求出的解析式;
(2)設(shè)出A、B的坐標(biāo),根據(jù)四邊形OPAB是菱形,得到是等邊三角形,求出AB,再利用勾股定理求出OE,OE等于點A的縱坐標(biāo),聯(lián)立方程,從而求出P的坐標(biāo).
試題解析:(1)在雙曲線上,
,
雙曲線關(guān)于軸對稱,
 ;
(2)雙曲線關(guān)于軸對稱
∴點A與點B關(guān)于y軸對稱,有OA=OB. 
設(shè),則,AB=2m,

∵四邊形OPAB是菱形,則OB=AB,
是等邊三角形.
 ,  ,
, .
, , ,
同理,當(dāng)四邊形OABP是菱形時,
綜上所述,滿足要求的點P有兩個:
考點:1.反比例函數(shù)2.菱形性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=(x>0)的圖象交于點P(n,2),與x軸交于點A(﹣4,0),與y軸交于點C,PB⊥x軸于點B,且AC=BC.
(1)求一次函數(shù)、反比例函數(shù)的解析式;
(2)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形?如果存在,求出點D的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在邊為的1正方形組成的網(wǎng)格中,建立平面直角坐標(biāo)系,若A(﹣4,2)、B(﹣2,3)、C(﹣1,1),將△ABC沿著x軸翻折后,得到△DEF,點B的對稱點是點E,求過點E的反比例函數(shù)解析式,并寫出第三象限內(nèi)該反比例函數(shù)圖象所經(jīng)過的所有格點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,正比例函數(shù)的圖象與反比例函數(shù)的圖象交于點
(1)試確定上述正比例函數(shù)和反比例函數(shù)的表達式;
(2)根據(jù)圖象回答,在第一象限內(nèi),當(dāng)取何值時,反比例函數(shù)的值大于正比例函數(shù)的值?
(3)M(m,n)是反比例函數(shù)圖像上的一動點,其中0<m<3,過M作直線MB‖x軸交y軸于點B。過點A作直線AC∥y軸交于點C,交直線MB于點D,當(dāng)四邊形OADM的面積為6時,請判斷線段BM與DM的大小關(guān)系,并說明理由;
(4)探索:x軸上是否存在點P,使ΔOAP是等腰三角形?若存在,求出點P的坐標(biāo),若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,矩形OABC的頂點A,C分別在x,y軸的正半軸上,點D為對角線OB的中點,點E(4,n)在邊AB上,反比例函數(shù)y= (k≠0)在第一象限內(nèi)的圖象經(jīng)過點D,E,且tan∠BOA=.

(1)求邊AB的長;
(2)求反比例函數(shù)的解析式和n的值;
(3)若反比例函數(shù)的圖象與矩形的邊BC交于點F,將矩形折疊,使點O與點F重合,折痕分別與x,y軸正半軸交于點H,G,求線段OG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A、B兩點,且點B的坐標(biāo)為

(1)求反比例函數(shù)的表達式;
(2)點在反比例函數(shù)的圖象上,求△AOC的面積;
(3)在(2)的條件下,在坐標(biāo)軸上找出一點P,使△APC為等腰三角形,請直接寫出所有符合條件的點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,一次函數(shù)y1=x+1的圖像與反比例函數(shù)(k為常數(shù),且k≠0)的圖像都經(jīng)過點A(m,2).

(1)求點A的坐標(biāo)及反比例函數(shù)的表達式;
(2)結(jié)合圖像直接比較:當(dāng)時,的大小。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,菱形OABC的頂點O是坐標(biāo)原點,頂點A在x的正半軸上,頂點B、C均在第一象限,OA=2,∠AOC=600,點D在邊AB上,將四邊形ODBC沿直線OD翻折,使點B和點C分別落在這個坐標(biāo)平面的點B′和點C′處,且∠C′DB′=600。若某反比例函數(shù)的圖象經(jīng)過點B′,則這個反比例函數(shù)的解析式為
       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

已知反比例函數(shù)在第一象限的圖象如圖所示,點A在其圖象上,點B為軸正半軸上一點,連接AO、AB,且AO=AB,則SAOB=       .

查看答案和解析>>

同步練習(xí)冊答案