根據(jù)條件比較大。

(1)已知a>b>0,試比較a2與b2的大。

(2)已知a<b<0,試比較a2與b2的大;

(3)已知a>b,c=d,試比較ac與bd的大。

答案:
解析:

  (1)當(dāng)a>b>0時(shí),a2>b2;

  (2)當(dāng)a<b<0時(shí),a2>b2;

  (3)當(dāng)c、d為正數(shù)時(shí),ac>bd;當(dāng)c、d是零時(shí),ac=bd;當(dāng)c、d為負(fù)數(shù)時(shí),ac<bd.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

為了從甲、乙兩學(xué)生中選拔一人參加電腦知識(shí)競(jìng)賽,在相同條件下對(duì)他們的電腦知識(shí)進(jìn)行了10次測(cè)驗(yàn),成績(jī)?nèi)缦拢▎挝唬悍郑?table class="edittable"> 甲成績(jī)(分) 76 84 90 86 81 87 86 82 85 83 乙成績(jī)(分) 83 86 85 90 80 79 91 90 76 80根據(jù)上表中的數(shù)據(jù),回答下列問題:
(1)甲學(xué)生成績(jī)的眾數(shù)是
 
分,乙學(xué)生成績(jī)的眾數(shù)是
 
分.
(2)若甲學(xué)生成績(jī)的平均數(shù)為
.
x
,乙學(xué)生成績(jī)的平均數(shù)為
.
x
,則
.
x
、
.
x
的大小關(guān)系是
 

(3)經(jīng)過計(jì)算得:S2=13.2,請(qǐng)你計(jì)算S2的值,并通過比較S2與S2的值說明哪個(gè)同學(xué)參加比較好?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在數(shù)學(xué)的學(xué)習(xí)中,我們要學(xué)會(huì)總結(jié),不斷地歸納,思考和運(yùn)用,這樣才能提高我們解決問題的能力,下面這個(gè)問題大家一定似曾相識(shí):
(1)比較大小:
①2+1
 
2
2×1
;  ②3+
1
3
 
2
1
3
③8+8
 
2
8×8

通過上面三個(gè)計(jì)算,我們可以初步對(duì)任意的非負(fù)實(shí)數(shù)a,b做出猜想a+b
 
2
ab
;
(2)學(xué)習(xí)了《二次根式》后我們可以對(duì)此猜想進(jìn)行代數(shù)證明,請(qǐng)欣賞:
對(duì)于任意非負(fù)實(shí)數(shù)a,b,∵(
a
-
b
)2≥0
,∴a-2
ab
+b≥0
,∴a+b≥2
ab
,只有當(dāng)a=b時(shí),等號(hào)成立.
(3)學(xué)習(xí)《圓》后,我們可以對(duì)這個(gè)結(jié)論進(jìn)行幾何驗(yàn)證:
如圖,AB為半圓O的直徑,C為半圓上的任意一點(diǎn),(與A、B不重合)過點(diǎn)C作CD⊥AB,垂足為D,AD=a,DB=b.
根據(jù)圖形證明:a+b≥2
ab
,并指出等號(hào)成立時(shí)的條件.
精英家教網(wǎng)
(4)驀然回首,我們發(fā)現(xiàn)在上學(xué)期的《梯形的中位線》一節(jié)遇到的一個(gè)問題,此時(shí)運(yùn)用這個(gè)結(jié)論解決是那樣的簡(jiǎn)單:
如圖有一個(gè)等腰梯形工件(厚度不計(jì)),其面積為1800cm2,現(xiàn)在要用細(xì)包裝帶如圖那樣包扎(四點(diǎn)為四邊中點(diǎn)),則至少需要包裝帶的長(zhǎng)度為
 
cm.
(注意:包扎時(shí)背面也有帶子,打結(jié)處長(zhǎng)度忽略不計(jì))
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在數(shù)學(xué)的學(xué)習(xí)中,我們要學(xué)會(huì)總結(jié),不斷地歸納,思考和運(yùn)用,這樣才能提高我們解決問題的能力,下面這個(gè)問題大家一定似曾相識(shí):
(1)比較大。
①2+1______數(shù)學(xué)公式;、數(shù)學(xué)公式______數(shù)學(xué)公式③8+8______數(shù)學(xué)公式
通過上面三個(gè)計(jì)算,我們可以初步對(duì)任意的非負(fù)實(shí)數(shù)a,b做出猜想a+b______數(shù)學(xué)公式;
(2)學(xué)習(xí)了《二次根式》后我們可以對(duì)此猜想進(jìn)行代數(shù)證明,請(qǐng)欣賞:
對(duì)于任意非負(fù)實(shí)數(shù)a,b,∵數(shù)學(xué)公式,∴數(shù)學(xué)公式,∴數(shù)學(xué)公式,只有當(dāng)a=b時(shí),等號(hào)成立.
(3)學(xué)習(xí)《圓》后,我們可以對(duì)這個(gè)結(jié)論進(jìn)行幾何驗(yàn)證:
如圖,AB為半圓O的直徑,C為半圓上的任意一點(diǎn),(與A、B不重合)過點(diǎn)C作CD⊥AB,垂足為D,AD=a,DB=b.
根據(jù)圖形證明:數(shù)學(xué)公式,并指出等號(hào)成立時(shí)的條件.

(4)驀然回首,我們發(fā)現(xiàn)在上學(xué)期的《梯形的中位線》一節(jié)遇到的一個(gè)問題,此時(shí)運(yùn)用這個(gè)結(jié)論解決是那樣的簡(jiǎn)單:
如圖有一個(gè)等腰梯形工件(厚度不計(jì)),其面積為1800cm2,現(xiàn)在要用細(xì)包裝帶如圖那樣包扎(四點(diǎn)為四邊中點(diǎn)),則至少需要包裝帶的長(zhǎng)度為______cm.
(注意:包扎時(shí)背面也有帶子,打結(jié)處長(zhǎng)度忽略不計(jì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年江蘇省無錫市育才中學(xué)九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

在數(shù)學(xué)的學(xué)習(xí)中,我們要學(xué)會(huì)總結(jié),不斷地歸納,思考和運(yùn)用,這樣才能提高我們解決問題的能力,下面這個(gè)問題大家一定似曾相識(shí):
(1)比較大小:
①2+1______;  ②______③8+8______
通過上面三個(gè)計(jì)算,我們可以初步對(duì)任意的非負(fù)實(shí)數(shù)a,b做出猜想a+b______;
(2)學(xué)習(xí)了《二次根式》后我們可以對(duì)此猜想進(jìn)行代數(shù)證明,請(qǐng)欣賞:
對(duì)于任意非負(fù)實(shí)數(shù)a,b,∵,∴,∴,只有當(dāng)a=b時(shí),等號(hào)成立.
(3)學(xué)習(xí)《圓》后,我們可以對(duì)這個(gè)結(jié)論進(jìn)行幾何驗(yàn)證:
如圖,AB為半圓O的直徑,C為半圓上的任意一點(diǎn),(與A、B不重合)過點(diǎn)C作CD⊥AB,垂足為D,AD=a,DB=b.
根據(jù)圖形證明:,并指出等號(hào)成立時(shí)的條件.

(4)驀然回首,我們發(fā)現(xiàn)在上學(xué)期的《梯形的中位線》一節(jié)遇到的一個(gè)問題,此時(shí)運(yùn)用這個(gè)結(jié)論解決是那樣的簡(jiǎn)單:
如圖有一個(gè)等腰梯形工件(厚度不計(jì)),其面積為1800cm2,現(xiàn)在要用細(xì)包裝帶如圖那樣包扎(四點(diǎn)為四邊中點(diǎn)),則至少需要包裝帶的長(zhǎng)度為______

查看答案和解析>>

同步練習(xí)冊(cè)答案