【題目】已知:如圖,Rt△ABC中,∠ABC=90°,AD平分∠BAC交BC于D.
(1)用尺規(guī)畫圓O,使圓O過A、D兩點(diǎn),且圓心O在邊AC上.(保留作圖痕跡,不寫作法)
(2)求證:BC與圓O相切;
(3)設(shè)圓O交AB于點(diǎn)E,若AE=2,CD=2BD.求線段BE的長和弧DE的長.
【答案】
(1)解:⊙O即為所求:
(2)解:連接OD,
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠BAC,
∴∠BAD=∠OAD,
∴∠BAD=∠ODA,
∴OD∥AB,
∴∠ODC=∠ABC=90°,
∵OD是半徑,
∴BC與⊙O相切;
(3)連接OE,過點(diǎn)O作OF⊥AB于點(diǎn)F,
∵AE=2,
∴由垂徑定理定理可知:AF=1,
∵CD=2BD,
∴ = , = ,
∵OF∥BC,
∴△AOF∽△ACB,
∴ ,
∵OF=BD,
∴ = ,
∴ = ,
∴AB=3,
∴BE=AB﹣AE=1,
∵OD∥AB,
∴△OCD∽△ACB,
∴ = ,
∴OD=2,
∴OA=OD=AE,
∴△AOE是等邊三角形,
∴∠AEO=60°
∵OD∥AB,
∴∠EOD=60°,
∴ 的長度是: = .
【解析】(1)要使⊙O過A、D兩點(diǎn),即OA=OD,所以點(diǎn)O在線段AD的垂直平分線上,且圓心O在AC邊上,所以作出AD的垂直平分線與AC的交點(diǎn)即為點(diǎn)O;(2)要證明BC與⊙O相切,連接OD后,只需要證明∠ODC=90°即可;(3)由于AE是⊙O的弦,可過點(diǎn)O作OF⊥AE于點(diǎn)F,然后利用垂徑定理可知AF=1,利用△AOF∽△ACB求出AB的值,所以BE=AB﹣AE.再利用△OCD∽△ACB,求出半徑OD,可知△AOE是等邊三角形,所以 所對的圓心角為60°,利用弧長公式即可求出 的長度.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從甲地到乙地的鐵路路程約為615千米,高鐵速度為300千米/小時(shí),直達(dá);動車速度為200千米/小時(shí),行駛180千米后,中途要停靠徐州10分鐘,若動車先出發(fā)半小時(shí),兩車與甲地之間的距離y(千米)與動車行駛時(shí)間x(小時(shí))之間的函數(shù)圖象為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足為O,AD∥BC,且AB=5,BC=12,則AD的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方成同學(xué)看到一則材料,甲開汽車,乙騎自行車從M地出發(fā)沿一條公路勻速前往N地,設(shè)乙行駛的時(shí)間為t(h),甲乙兩人之間的距離為y(km),y與t的函數(shù)關(guān)系如圖1所示,方成思考后發(fā)現(xiàn)了圖1的部分正確信息,乙先出發(fā)1h,甲出發(fā)20分鐘后與乙相遇,…,請你幫助方成同學(xué)解決以下問題:
(1)分別求出線段BC,CD所在直線的函數(shù)表達(dá)式;
(2)當(dāng)15<y<25時(shí),求t的取值范圍;
(3)分別求出甲、乙行駛的路程S甲、S乙與時(shí)間t的函數(shù)表達(dá)式,并在圖2所給的直角坐標(biāo)系中分別畫出它們的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,10個(gè)邊長為1的正方形如圖擺放在平面直角坐標(biāo)系中,經(jīng)過原點(diǎn)的一條直線l將這10個(gè)正方形分成面積相等的兩部分,則該直線l的解析式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一直角坐標(biāo)系中,直線y=﹣x+3與y=3x﹣5相交于C點(diǎn),分別與x軸交于A、B兩點(diǎn).P、Q分別為直線y=﹣x+3與y=3x﹣5上的點(diǎn).
(1)求△ABC的面積;
(2)若P、Q關(guān)于原點(diǎn)成中心對稱,求P點(diǎn)的坐標(biāo);
(3)若△QPC≌△ABC,求Q點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E,F(xiàn)分別在BC,CD上,△AEF是等邊三角形,連接AC交EF于點(diǎn)G,下列結(jié)論:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF=2S△ABE , 其中結(jié)論正確的個(gè)數(shù)為( )
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=60°,點(diǎn)E為直線AC上一點(diǎn),D為直線BC上的一點(diǎn),且DA=DE. 當(dāng)點(diǎn)D在線段BC上時(shí),如圖①,易證:BD+AB=AE;
當(dāng)點(diǎn)D在線段CB的延長線上時(shí),如圖②、圖③,猜想線段BD,AB和AE之間又有怎樣的數(shù)量關(guān)系?寫出你的猜想,并選擇一種情況給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c圖象如圖,下列正確的個(gè)數(shù)為( )
①bc>0;
②2a﹣3c<0;
③2a+b>0;
④ax2+bx+c=0有兩個(gè)解x1 , x2 , 當(dāng)x1>x2時(shí),x1>0,x2<0;
⑤a+b+c>0;
⑥當(dāng)x>1時(shí),y隨x增大而減。
A.2
B.3
C.4
D.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com