【題目】如圖,ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).

(1)請畫出ABC向左平移5個(gè)單位長度后得到的A1B1C1;

(2)請畫出ABC關(guān)于原點(diǎn)對稱的A2B2C2;

(3)在x軸上求作一點(diǎn)P,使PAB的周長最小,請畫出PAB,并直接寫出P的坐標(biāo).

【答案】(1)、答案見解析;(2)、答案見解析;(3)、(2,0).

【解析】

試題分析:(1)、根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C平移后的對應(yīng)點(diǎn)A1、B1、C1的位置,然后順次連接即可;(2)、根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C關(guān)于原點(diǎn)的對稱點(diǎn)A2、B2、C2的位置,然后順次連接即可;(3)、找出點(diǎn)A關(guān)于x軸的對稱點(diǎn)A,連接AB與x軸相交于一點(diǎn),根據(jù)軸對稱確定最短路線問題,交點(diǎn)即為所求的點(diǎn)P的位置,然后連接AP、BP并根據(jù)圖象寫出點(diǎn)P的坐標(biāo)即可.

試題解析:(1)、A1B1C1如圖所示;(2)、A2B2C2如圖所示;(3)、PAB如圖所示,P(2,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,點(diǎn)E、F分別在邊BC、CD上,且BE=DF,點(diǎn)P是AF的中點(diǎn),點(diǎn)Q是直線AC與EF的交點(diǎn),連接PQ、PD.

(1)求證:AC垂直平分EF;

(2)試判斷PDQ的形狀,并加以證明;

(3)如圖2,若將CEF繞著點(diǎn)C旋轉(zhuǎn)180°,其余條件不變,則(2)中的結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)6﹣(﹣10)+(﹣9)﹣12

(2)﹣32+4×(﹣3)﹣(﹣2)3÷4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】冬季某天我國三個(gè)城市的最高氣溫分別是﹣10℃,1℃,﹣7℃,它們?nèi)我鈨沙鞘兄凶畲蟮臏夭钍牵?/span>
A.11℃
B.17℃
C.8℃
D.3℃

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】H7N9時(shí)一種新型禽流感,其病毒顆粒呈多形性,其中球形病毒的最大直徑為0.00000012米,這一直徑用科學(xué)記數(shù)法表示為( )
A.1.2×107
B.1.2×108
C.12×108
D.12×109

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)請?jiān)跈M線上填寫合適的內(nèi)容,完成下面的證明:
如圖1,AB∥CD,求證:∠B+∠D=∠BED.
證明:過點(diǎn)E引一條直線EF∥AB
∴∠B=∠BEF,(
∵AB∥CD,EF∥AB
∴EF∥CD(
∴∠D=
∴∠B+∠D=∠BEF+∠FED
即∠B+∠D=∠BED.
(2)如圖2,AB∥CD,請寫出∠B+∠BED+∠D=360°的推理過程.
(3)如圖3,AB∥CD,請直接寫出結(jié)果∠B+∠BEF+∠EFD+∠D=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若等式x2+px+q=(x+1)(x﹣3)成立,則p+q=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x2y3﹣3xy2﹣2次數(shù)和項(xiàng)數(shù)分別是(
A.5,3
B.5,2
C.2,3
D.3,3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論中,不正確的是( 。

A. 兩點(diǎn)確定一條直線

B. 兩點(diǎn)之間,直線最短

C. 等角的余角相等

D. 過直線外一點(diǎn),有且只有一條直線與已知直線平行

查看答案和解析>>

同步練習(xí)冊答案