【題目】在某次海上軍事學(xué)習(xí)期間,我軍為確保△OBC海域內(nèi)的安全,特派遣三艘軍艦分別在O、B、C處監(jiān)控△OBC海域,在雷達(dá)顯示圖上,軍艦B在軍艦O的正東方向80海里處,軍艦C在軍艦B的正北方向60海里處,三艘軍艦上裝載有相同的探測(cè)雷達(dá),雷達(dá)的有效探測(cè)范圍是半徑為r的圓形區(qū)域.(只考慮在海平面上的探測(cè))
(1)若三艘軍艦要對(duì)△OBC海域進(jìn)行無(wú)盲點(diǎn)監(jiān)控,則雷達(dá)的有效探測(cè)半徑r至少為多少海里?
(2)現(xiàn)有一艘敵艦A從東部接近△OBC海域,在某一時(shí)刻軍艦B測(cè)得A位于北偏東60°方向上,同時(shí)軍艦C測(cè)得A位于南偏東30°方向上,求此時(shí)敵艦A離△OBC海域的最短距離為多少海里?
(3)若敵艦A沿最短距離的路線以20海里/小時(shí)的速度靠近△OBC海域,我軍軍艦B沿北偏東15°的方向行進(jìn)攔截,問(wèn)B軍艦速度至少為多少才能在此方向上攔截到敵艦A?
【答案】(1)雷達(dá)的有效探測(cè)半徑r至少為50海里;(2)敵艦A離△OBC海域的最短距離為15海里;(3)B軍艦速度至少為20海里/小時(shí).
【解析】
試題分析:(1)在RT△OBC中,根據(jù)勾股定理求出OC,由題意r≥OC,由此得答案.(2)作AM⊥BC于M,先求得AB的長(zhǎng),在RT△ABM中求出AM的長(zhǎng)即可得答案.(3)假設(shè)B軍艦在點(diǎn)N處攔截到敵艦.在BM上取一點(diǎn)H,使得HB=HN,設(shè)MN=x,先列出方程求出x,再求出BN、AN利用不等式解決問(wèn)題.
試題解析:(1)在RT△OBC中,∵BO=80,BC=60,∠OBC=90°,
∴OC=,
∵OC=×100=50
∴雷達(dá)的有效探測(cè)半徑r至少為50海里.
(2)作AM⊥BC于M,
∵∠ACB=30°,∠CBA=60°,
∴∠CAB=90°,
∴AB=BC=30,
在RT△ABM中,∵∠AMB=90°,AB=30,∠BAM=30°,
∴BM=AB=15,AM=BM=15,
∴此時(shí)敵艦A離△OBC海域的最短距離為15海里.
(3)假設(shè)B軍艦在點(diǎn)N處攔截到敵艦.在BM上取一點(diǎn)H,使得HB=HN,設(shè)MN=x,
∵∠HBN=∠HNB=15°,
∴∠MHN=∠HBN+∠HNB=30°,
∴HN=HB=2x,MH=x,
∵BM=15,
∴15=x+2x,
x=30﹣15,
∴AN=30﹣30,
BN=,設(shè)B軍艦速度為a海里/小時(shí),
由題意,
∴a≥20.
∴B軍艦速度至少為20海里/小時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,I是ABC的內(nèi)心,AI向延長(zhǎng)線和△ABC的外接圓相交于點(diǎn)D,連接BI,BD,DC下列說(shuō)法中錯(cuò)誤的一項(xiàng)是( )
A.線段DB繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定能與線段DC重合
B.線段DB繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定能與線段DI熏合
C.∠CAD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定能與∠DAB重合
D.線段ID繞點(diǎn)I順時(shí)針旋轉(zhuǎn)一定能與線段IB重合
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在每個(gè)小正方形邊長(zhǎng)為1的方格紙中,△ABC的頂點(diǎn)都在方格紙格點(diǎn)上.
(1)△ABC的面積為_(kāi)_____;
(2)將△ABC經(jīng)過(guò)平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對(duì)應(yīng)點(diǎn)B′,補(bǔ)全△A′B′C′;
(3)若連接AA′,BB′,則這兩條線段之間的關(guān)系是______;
(4)在圖中畫(huà)出△ABC的高CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,連接四邊形ABCD各邊中點(diǎn),得到四邊形EFGH,還要添加 條件,才能保證四邊形EFGH是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校測(cè)量了全校800名男生的身高,并進(jìn)行了分組,已知身高在1.70~1.75(單位:m)這一組的頻率為0.25,則該組共有男生( )
A. 100名B. 200名C. 250名D. 400名
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】a4+(1-a)(1+a)(1+a2)的計(jì)算結(jié)果是( )
A.-1
B.1
C.2a4-1
D.1-2a4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生暑期在家的閱讀情況,隨機(jī)調(diào)查了20名學(xué)生某一天的閱讀小時(shí)數(shù),具體統(tǒng)計(jì)如下:
閱讀時(shí)間(小時(shí)) | 2 | 2.5 | 3 | 3.5 | 4 |
學(xué)生人數(shù)(名) | 1 | 2 | 8 | 6 | 3 |
則關(guān)于這20名學(xué)生閱讀小時(shí)的眾數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】去年1—5月份,深圳市累計(jì)完成地方一般預(yù)算收入216.58億元,數(shù)據(jù)216.58億精確到( )
A. 百億位 B. 億位 C. 百萬(wàn)位 D. 百分位
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中有兩點(diǎn)M(a,b),N(c,d),規(guī)定(a,b)⊕(c,d)=(a+c,b+d),則稱(chēng)點(diǎn)Q(a+c,b+d)為M,N的“和點(diǎn)”.若以坐標(biāo)原點(diǎn)O與任意兩點(diǎn)及它們的“和點(diǎn)”為頂點(diǎn)能構(gòu)成四邊形,則稱(chēng)這個(gè)四邊形為“和點(diǎn)四邊形”,現(xiàn)有點(diǎn)A(2,5),B(﹣1,3),若以O,A,B,C四點(diǎn)為頂點(diǎn)的四邊形是“和點(diǎn)四邊形”,則點(diǎn)C的坐標(biāo)是___________。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com