【題目】為推進陽光體育活動的開展,某學校決定開設以下體育課外活動項目:A 排球;B 乒乓球;C 籃球;D 羽毛球.為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

(1)這次被調(diào)查的學生共有 人;
(2)請你將條形統(tǒng)計圖補充完整;
(3)求喜歡排球人數(shù)所占扇形圓心角的大;
(4)若甲、乙、丙、丁四位同學都喜歡乒乓球運動,現(xiàn)從這四名同學中任選兩名進行對抗練習, 求恰好選中乙、丙兩位同學的概率(用樹狀圖或列表法解答).

【答案】
(1)解:根據(jù)題意得:這次被調(diào)查的學生共有40÷ =200(人),故答案為:200;
(2)解:C項目對應人數(shù)為:200-20-80-40=60(人),補充如圖:


(3)解:喜歡排球人數(shù)所占扇形圓心角的大小為: ×360°=36°;
(4)解:列表如下

 ̄ ̄

(乙,甲)

(丙,甲)

(丁,甲)

(甲,乙)

 ̄ ̄

(丙,乙)

(丁,乙)

(甲,丙)

(乙,丙)

 ̄ ̄

(丁,丙)

(甲,。

(乙,。

(丙,。

 ̄ ̄

∵共有12種等可能的情況,恰好選中乙、丙兩位同學的有2種,

∴P(選中乙、丙)= =


【解析】(1)先根據(jù)D的圓心角的度數(shù)求出D所占的百分比,然后用D的人數(shù)除以D所占的百分比,即可求出這次被調(diào)查的學生的人數(shù)。
(2)求出C項目對應人數(shù),即可補全條形統(tǒng)計圖。
(3)要求喜歡排球人數(shù)所占扇形圓心角,先求出喜歡排球人數(shù)所占的百分比,然后求出圓心角的度數(shù)。
(4)先列表或樹狀圖,求出所有的等可能結果數(shù)及恰好選中乙、丙兩位同學的可能數(shù),利用概率公式即可求解。
【考點精析】掌握全面調(diào)查與抽樣調(diào)查和扇形統(tǒng)計圖是解答本題的根本,需要知道全面調(diào)查收集到的數(shù)據(jù)全面、準確,但一般花費多、耗時長,而且某些調(diào)查不宜用全面調(diào)查;抽樣調(diào)查具有花費少、省時的特點,但抽取的樣本是否具有代表性,直接關系到對總體估計的準確程度;能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CDAB,OE平分∠AODOFOE,OGCD,∠CDO50°,則下列結論:

AOE65°;② OF平分∠BOD;③ GOE=∠DOF;④ AOE=∠GOD,其中正確結論的個數(shù)是(

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果關于 x 的不等式-3x-m1.5 的整數(shù)解之和為 6,那么 m 的取值范圍是( )

A.無解B.2m3C.1.5m2.5D.2m2.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形 的邊長為 , ,弧 是以點 為圓心、 長為半徑的弧,弧 是以點 為圓心、 長為半徑的弧,則陰影部分的面積為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某高校共有5個大餐廳和2個小餐廳。經(jīng)過測試:同時開放1個大餐廳和2個小餐廳,可供1680名學生就餐;同時開放2個大餐廳和1個小餐廳,可供2280名學生就餐。

(1)1個大餐廳和1個小餐廳分別可供多少名學生就餐?

(2)若7個餐廳同時開放,能否供全校的5300名學生就餐?請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象以 為頂點,且過點
(1)求該函數(shù)的關系式;
(2)求該函數(shù)圖象與坐標軸的交點坐標;
(3)將函數(shù)圖象向左平移多少個單位,該函數(shù)圖象恰好經(jīng)過原點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在□ ABCD中,點E、F在對角線BD上,且BEDF.

(1)求證:AECF;

(2)求證:四邊形AECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某研究性學習小組在探究矩形的折紙問題時,將一塊直角三角板的直角頂點繞矩形ABCDABBC)的對角線的交點O旋轉(),圖中的M、N分別為直角三角形的直角邊與矩形ABCD的邊CD、BC的交點.

1)該學習小組成員意外的發(fā)現(xiàn)圖(三角板一直角邊與OD重合)中,BN2CD2+CN2,在圖中(三角板一邊與OC重合),CN2BN2+CD2,請你對這名成員在圖和圖中發(fā)現(xiàn)的結論選擇其一說明理由.

2)試探究圖BNCN、CM、DM這四條線段之間的數(shù)量關系,寫出你的結論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人相約元旦登山,甲、乙兩人距地面的高度y(m)與登山時間x(min)之間的函數(shù)圖像如圖所示,根據(jù)圖像所提供的信息解答下列問題:

1t= min.

2)若乙提速后,乙登山的上升速度是甲登山的上升速度3倍,

則甲登山的的上升速度是 m/min

請求出甲登山過程中,距地面的高度y(m)與登山時間x(min)之間的函數(shù)關系式.

當甲、乙兩人距地面高度差為70m時,求x的值(直接寫出滿足條件的x值).

查看答案和解析>>

同步練習冊答案