某記者抽樣調(diào)查了某校一些學生假期用于讀書的時間(單位:分鐘)后,繪制了頻數(shù)分布直方圖,從左到右的前5個長方形相對應(yīng)的頻率之和為0.9,最后一組的頻數(shù)是15,則此次抽樣調(diào)查的人數(shù)為 150 人.(注:橫軸上每組數(shù)據(jù)包含最小值不包含最大值)

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:


如圖,AB是⊙O的直徑,P為AB延長線上的一個動點,過點P作⊙O的切線,切點為C,連接AC,BC,作∠APC的平分線交AC于點D.

下列結(jié)論正確的是  (寫出所有正確結(jié)論的序號)

①△CPD∽△DPA;

②若∠A=30°,則PC=BC;

③若∠CPA=30°,則PB=OB;

④無論點P在AB延長線上的位置如何變化,∠CDP為定值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,A、B、C、D四個點均在⊙O上,∠AOD=70°,AO∥DC,則∠B的度數(shù)為( 。

 

A.

40°

B.

45°

C.

50°

D.

55°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖1,拋物線y=ax2+bx+c(a>0)的頂點為M,直線y=m與x軸平行,且與拋物線交于點A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點之間的部分與線段AB圍成的圖形稱為該拋物線對應(yīng)的準蝶形,線段AB稱為碟寬,頂點M稱為碟頂,點M到線段AB的距離稱為碟高.

(1)拋物線y=x2對應(yīng)的碟寬   ;拋物線y=4x2對應(yīng)的碟寬為   ;拋物線y=ax2(a>0)對應(yīng)的碟寬為   ;拋物線y=a(x﹣2)2+3(a>0)對應(yīng)的碟寬為   ;

(2)拋物線y=ax2﹣4ax﹣(a>0)對應(yīng)的碟寬為6,且在x軸上,求a的值;

(3)將拋物線y=anx2+bnx+cn(an>0)的對應(yīng)準蝶形記為Fn(n=1,2,3…),定義F1,F(xiàn)2,…,F(xiàn)n為相似準蝶形,相應(yīng)的碟寬之比即為相似比.若Fn與Fn﹣1的相似比為,且Fn的碟頂是Fn﹣1的碟寬的中點,現(xiàn)將(2)中求得的拋物線記為y1,其對應(yīng)的準蝶形記為F1

①求拋物線y2的表達式;

②若F1的碟高為h1,F(xiàn)2的碟高為h2,…Fn的碟高為hn,則hn=   ,F(xiàn)n的碟寬有端點橫坐標為    ;F1,F(xiàn)2,…,F(xiàn)n的碟寬右端點是否在一條直線上?若是,直接寫出該直線的表達式;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


某市出租車起步價是5元(3公里及3公里以內(nèi)為起步價),以后每公里收費是1.6元,不足1公里按1公里收費,小明乘出租車到達目的地時計價器顯示為11.4元,則此出租車行駛的路程可能為(  )

 

A.

5.5公里

B.

6.9公里

C.

7.5公里

D.

8.1公里

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,矩形ABCD中,AD=,F(xiàn)是DA延長線上一點,G是CF上一點,且∠ACG=∠AGC,∠GAF=∠F=20°,則AB=  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


甲、乙兩名同學進入初四后,某科6次考試成績?nèi)鐖D:

(1)請根據(jù)下圖填寫如表:

平均數(shù)

方差

中位數(shù)

眾數(shù)

極差

75

   

75

   

   

   

33.3

   

   

15

(2)請你分別從以下兩個不同的方面對甲、乙兩名同學6次考試成績進行分析:

①從平均數(shù)和方差相結(jié)合看;②從折線圖上兩名同學分數(shù)的走勢上看,你認為反映出什么問題?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,菱形ABCD中,AC、BD相交于點O,若∠BCO=55°,則∠ADO=  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


某商場對上月筆袋銷售的情況進行統(tǒng)計如下表所示:

顏色

白色

黃色

藍色

紫色

紅色

數(shù)量(個)

56

128

520

210

160

經(jīng)理決定本月進筆袋時多進一些藍色的,經(jīng)理的這一決定應(yīng)用了哪個統(tǒng)計知識( 。

 

A.

平均數(shù)

B.

方差

C.

中位數(shù)

D.

眾數(shù)

查看答案和解析>>

同步練習冊答案