【題目】如圖,在等邊△ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過(guò)點(diǎn)E作EF⊥DE,交BC的延長(zhǎng)線(xiàn)于點(diǎn)F,
(1)求∠F的度數(shù);
(2)若CD=5,求DF的長(zhǎng).
【答案】(1)∠F=30°;(2)DF=10.
【解析】
(1)根據(jù)平行線(xiàn)的性質(zhì)可得∠EDC=∠B=60°,根據(jù)三角形內(nèi)角和定理即可求解;
(2)易證△EDC是等邊三角形,再根據(jù)直角三角形的性質(zhì)即可求解.
(1)∵△ABC是等邊三角形,∴∠B=60°.
∵DE∥AB,∴∠EDC=∠B=60°.
∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;
(2)∵∠ACB=60°,∠EDC=60°,
∴△EDC是等邊三角形,
∴ED=DC=5.
∵∠DEF=90°,∠F=30°,
∴DF=2DE=10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】百匯超市服裝柜在銷(xiāo)售中發(fā)現(xiàn):“七彩”牌童裝平均每天可售出件,每件盈利元.為了迎接“元旦”,商場(chǎng)決定采取適降價(jià)措施,擴(kuò)大銷(xiāo)售量,增加盈利,減少庫(kù)存.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):如果每件童裝降價(jià)元,那么平均每天就可多售出件.
如果每件降價(jià)元,那么平均每天可售出幾件?
要想平均每天銷(xiāo)售這種童裝上盈利元,那么每件童裝應(yīng)降價(jià)多少元?
用配方法說(shuō)明:要想盈利最多,每件童裝應(yīng)降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ABC與∠ACB的平分線(xiàn)交于點(diǎn)F,過(guò)點(diǎn)F作DE∥BC交AB于點(diǎn)D,交AC于點(diǎn)E,那么下列結(jié)論,①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,∠BFC=105°;④BF=CF.其中正確的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市出租汽車(chē)收費(fèi)標(biāo)準(zhǔn)為:以?xún)?nèi)(含)收費(fèi)元;超出的部分,每千米收費(fèi)元.
(1)寫(xiě)出車(chē)費(fèi)元與行駛路程x(km)之間的函數(shù)關(guān)系式(≥4);
(2)某人乘出租汽車(chē)行駛了5 km,應(yīng)付多少車(chē)費(fèi);
(3)若某人付了元車(chē)費(fèi),那么出租車(chē)行駛了多遠(yuǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,△ABC中,∠BAC=90°,AB=AC,D,E在BC上,∠DAE=45°,為了探究BD,DE,CE之間的等量關(guān)系,現(xiàn)將△AEC繞A順時(shí)針旋轉(zhuǎn)90°后成△AFB,連接DF,經(jīng)探究,你所得到的BD,DE,CE之間的等量關(guān)系式是 ;(無(wú)須證明)
(2)如圖2,在△ABC中,∠BAC=120°,AB=AC,D,E在BC上,∠DAE=60°,∠ADE=45°,試仿照(1)的方法,利用圖形的旋轉(zhuǎn)變換,探究BD,DE,CE之間的等量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB = AC,點(diǎn)D是邊BC的中點(diǎn),過(guò)點(diǎn)A、D分別作BC與AB的平行線(xiàn),相交于點(diǎn)E,連結(jié)EC、AD.
求證:四邊形ADCE是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題情境:如圖①,在直角三角形ABC中,∠BAC=90,AD⊥BC于點(diǎn)D,可知:∠BAD=∠C(不需要證明);
(1)特例探究:如圖②,∠MAN=90,射線(xiàn)AE在這個(gè)角的內(nèi)部,點(diǎn)B.C在∠MAN的邊AM、AN上,且AB=AC,CF⊥AE于點(diǎn)F,BD⊥AE于點(diǎn)D.證明:△ABD≌△CAF;
(2)歸納證明:如圖③,點(diǎn)B,C在∠MAN的邊AM、AN上,點(diǎn)E,F在∠MAN內(nèi)部的射線(xiàn)AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF;
(3)拓展應(yīng)用:如圖④,在△ABC中,AB=AC,AB>BC.點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E.F在線(xiàn)段AD上,∠1=∠2=∠BAC.若△ABC的面積為18,求△ACF與△BDE的面積之和是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】課間,小聰拿著老師的等腰直角三角板玩,不小心掉到兩墻之間(如圖),,,每塊砌墻用的磚塊厚度為,小聰很快就知道了兩個(gè)墻腳之間的距離的長(zhǎng)為______
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系,△ABC的頂點(diǎn)都在格點(diǎn)上,請(qǐng)解答下列問(wèn)題
(1)畫(huà)出將△ABC向左平移4個(gè)單位長(zhǎng)度后得到的圖形△A1B1C1,并寫(xiě)出點(diǎn)C1的坐標(biāo);
(2)畫(huà)出將△ABC關(guān)于原點(diǎn)O對(duì)稱(chēng)的圖形△A2B2C2,并寫(xiě)出點(diǎn)C2的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com