已知:OA、OB是⊙O的半徑,且OA⊥OB,P是射線OA上一點(diǎn)(點(diǎn)A除外),直線BP交⊙O于點(diǎn)Q,過Q作⊙O的切線交直線OA與點(diǎn)E。
(1)如圖①,若點(diǎn)P在線段OA上,求證:∠OBP+∠AQE=45°;(本題4分)
(2)探究:若點(diǎn)P在線段OA的延長線上,其它條件不變,∠OBP與∠AQE之間是否存在某種確定的等量關(guān)系?請你完成圖②,并寫出結(jié)論(不需要證明)。(本題3分)
(1)見解析(2)∠OBP-∠AQE=45°
【解析】
試題分析:(1)連接OQ,∵QE是⊙O的切線,OQ是半徑OQ⊥QE∴∠OQE=90°
∵OA⊥OB∴∠BOA=90°∴∠BQA=∠BOA=45°
∴∠OQB+∠AQE=90°-45°=45°
∵OB=OA∴∠OBP=∠OQB
∴∠OBP+∠AQE=45°
(2)∠OBP-∠AQE=45°(圖形正確1分,結(jié)論正確2分)
考點(diǎn):本題考查了垂徑定理
點(diǎn)評:此類試題屬于難度較大的試題,本題考查的是垂徑定理在實(shí)際生活中的應(yīng)用,解答此類題目的關(guān)鍵是根據(jù)題意畫出圖形,利用數(shù)形結(jié)合進(jìn)行解答
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆江蘇省常州市七校九年級上學(xué)期12月聯(lián)考數(shù)學(xué)試卷(帶解析) 題型:解答題
已知:OA、OB是⊙O的半徑,且OA⊥OB,P是射線OA上一點(diǎn)(點(diǎn)A除外),直線BP交⊙O于點(diǎn)Q,過Q作⊙O的切線交直線OA與點(diǎn)E。
(1)如圖①,若點(diǎn)P在線段OA上,求證:∠OBP+∠AQE=45°;(本題4分)
(2)探究:若點(diǎn)P在線段OA的延長線上,其它條件不變,∠OBP與∠AQE之間是否存在某種確定的等量關(guān)系?請你完成圖②,并寫出結(jié)論(不需要證明)。(本題3分)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com