如圖,已知直線l1∥l2∥l3∥l4∥l5,相鄰兩條平行直線間的距離相等且為1,如果四邊形ABCD的四個(gè)頂點(diǎn)在平行直線上,∠BAD=90°且AB=2AD,DC⊥l4,則四邊形ABCD的面積是
9
9
分析:首先延長(zhǎng)DC交l5于點(diǎn)F,延長(zhǎng)CD交l1于點(diǎn)E,作點(diǎn)B作BH⊥l1于點(diǎn)H,連接BD,易證得△BAH∽△ADE,然后由相似三角形的對(duì)應(yīng)邊成比例,求得AH,AE的長(zhǎng),由勾股定理求得AD與AB的長(zhǎng),然后由S四邊形ABCD=S△ABD+S△BCD,即可求得答案.
解答:解:延長(zhǎng)DC交l5于點(diǎn)F,延長(zhǎng)CD交l1于點(diǎn)E,作點(diǎn)B作BH⊥l1于點(diǎn)H,連接BD,
∵DC⊥l4,l1∥l2∥l3∥l4∥l5,
∴DC⊥l1,DC⊥l5,
∴∠BHA=∠DEA=90°,
∴∠ABH+∠BAH=90°,
∵∠BAD=90°,
∴∠BAH+∠DAE=90°,
∴∠ABH=∠DAE,
∴△BAH∽△ADE,
AB
AD
=
BH
AE
=
AH
DE
,
∵AB=2AD,BH=4,DE=1,
∴AE=2,AH=2,
∴BF=HE=AH+AE=2+2=4,
在Rt△ADE中,AD=
AE2+DE2
=
5

∴AB=2AD=2
5
,
∴S四邊形ABCD=S△ABD+S△BCD=
1
2
AB•AD+
1
2
CD•BF=
1
2
×2
5
×
5
+
1
2
×2×4=9.
故答案為:9.
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì)、勾股定理以及四邊形的面積問(wèn)題.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

6、如圖,已知直線l1,l2,l3相交于點(diǎn)O,∠1=35°,∠2=25°,則∠3等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•郯城縣一模)如圖,已知直線l1∥l2∥l3∥l4,相鄰兩條平行直線間的距離都是1,如果正方形ABCD的四個(gè)頂點(diǎn)分別在四條直線上,則cosα=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•黔南州)如圖,已知直線l1∥l2,∠1=50°,那么∠2=
50°
50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:已知直線l1∥l2,且l3、l4和l1、l2分別交于點(diǎn)A、B和點(diǎn)C、D,點(diǎn)P在AB上,設(shè)∠ADP=∠1,∠DPC=∠2,∠BCP=∠3.
(1)探究∠1、∠2、∠3之間的關(guān)系,并說(shuō)明你的結(jié)論的正確性.
(2)若點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí)(點(diǎn)P和A、B不重合),∠1、∠2、∠3 之間的關(guān)系
不會(huì)
不會(huì)
發(fā)生變化(填會(huì)或不會(huì))
(3)如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí),(點(diǎn)P和A、B不重合)
①當(dāng)點(diǎn)P在射線AM上時(shí),猜想∠1、∠2、∠3之間的關(guān)系為
∠2=∠3-∠1
∠2=∠3-∠1
;
②當(dāng)點(diǎn)P在射線BN上時(shí),猜想∠1、∠2、∠3之間的關(guān)系為
∠3=∠1-∠2
∠3=∠1-∠2
(不必證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點(diǎn)C和D,在直線l3上有點(diǎn)P(點(diǎn)P與點(diǎn)C、D不重合),點(diǎn)A在直線l1上,點(diǎn)B在直線l2上.
(1)如果點(diǎn)P在C、D之間運(yùn)動(dòng)時(shí),試說(shuō)明∠PAC+∠PBD=∠APB;
(2)如果點(diǎn)P在直線l1的上方運(yùn)動(dòng)時(shí),試探索∠PAC,∠APB,∠PBD之間的關(guān)系又是如何?
(3)如果點(diǎn)P在直線l2的下方運(yùn)動(dòng)時(shí),∠PAC,∠APB,∠PBD之間的關(guān)系又是如何?
∠PAC=∠PBD+∠APB
∠PAC=∠PBD+∠APB
(直接寫(xiě)出結(jié)論)

查看答案和解析>>

同步練習(xí)冊(cè)答案