【題目】如圖所示,在平行四邊形ABCD中,EF過對角線的交點(diǎn)O,如果AB=6cm,AD=5cmOF=2cm,那么四邊形 BCEF的周長為________

【答案】15 cm

【解析】

首先根據(jù)平行四邊形性質(zhì)得出BC=ADCD=AB,DO=BO,ABCD,由此進(jìn)一步證明△DEOBFO,從而得出BF=DE,OE=OF,最后通過等量代換進(jìn)一步求出答案即可.

∵四邊形ABCD是平行四邊形,

BC=AD,CD=AB,DO=BO,ABCD,

∴∠DEO=BFO

在△DEO與△BFO中,

∵∠DEO=BFO,∠EOD=FOB,DO=BO,

∴△DEOBFOAAS),

BF=DE,OE=OF

∴四邊形BCEF的周長=BC+CE+BF+EF=BC+CE+DE+2OF=BC+CD+2OF=15cm,

故答案為:15cm.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)點(diǎn)在第一,四象限及x軸上運(yùn)動,在第1次,它從原點(diǎn)運(yùn)動到點(diǎn)(1,﹣1),用了1秒,然后按圖中箭頭所示方向運(yùn)動,即(00)(1,﹣1)(2,0)(3,1)→…,它每運(yùn)動一次需要1秒,那么第2020秒時(shí)點(diǎn)所在的位置的坐標(biāo)是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E、F分別在邊ABCD上,下列條件不能判定四邊形DEBF一定是平行四邊形的是(

A.AECFB.DEBFC.ADE=∠CBFD.AED=∠CFB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校園安全受到全社會的廣泛關(guān)注.某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:

1)接受問卷調(diào)查的學(xué)生共有 人;

2)扇形統(tǒng)計(jì)圖中了解部分所對應(yīng)扇形的圓心角為 度;

3)請補(bǔ)全條形統(tǒng)計(jì)圖;

4)若該中學(xué)共有學(xué)生1200人,則該中學(xué)學(xué)生對校園安全知識達(dá)到了解基本了解程度的總?cè)藬?shù)約為多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)直角三角形重疊在一起,將其中一個(gè)三角形沿著點(diǎn)B到點(diǎn)C的方向平移到DEF的位置,AB=a,DH=4,平移距離CFa-2,試用a的代數(shù)式表示陰影部分的面積____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,ECD邊上一點(diǎn),且AE、BE分別平分∠DAB、∠ABC

1)求證:ADE≌△BCE;

2)已知AD3,求矩形的另一邊AB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD△ABC的角平分線,點(diǎn)OAB的中點(diǎn),連接DO并延長到點(diǎn)E,使OE=OD,連接AE,BE

1)求證:四邊形AEBD是矩形;

2)當(dāng)△ABC滿足什么條件時(shí),矩形AEBD是正方形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC≌△ADE,∠DAC70°,∠BAE100°,BC、DE相交于點(diǎn)F,則∠DFB度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:平面直角坐標(biāo)系中,A(a,3)、B(b,6)、C(c,1),ab、c都為實(shí)數(shù),并且滿足3b-5c=-2a-18,4bc=3a+10

(1) 請直接用含a的代數(shù)式表示bc

(2) 當(dāng)實(shí)數(shù)a變化時(shí),判斷ABC的面積是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍

(3) 當(dāng)實(shí)數(shù)a變化時(shí),若線段ABy軸相交,線段OB與線段AC交于點(diǎn)P,且SPABSPBC,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案