【題目】2015-2016賽季中國(guó)男子籃球職業(yè)聯(lián)賽(即CBA)激戰(zhàn)正酣,浙江廣廈隊(duì)表現(xiàn)不俗,暫居榜首,馬布里領(lǐng)銜的衛(wèi)冕冠軍北京首鋼隊(duì)?wèi)?zhàn)績(jī)不佳,截止1223日,在前21輪比賽中,積35分位列第七位,按比賽規(guī)則,勝一場(chǎng)得2分,負(fù)一場(chǎng)得1分,那么截止1223日北京首鋼隊(duì)共勝了多少場(chǎng)?

【答案】截止12月23日北京首鋼隊(duì)共勝了14場(chǎng).

【解析】

設(shè)截止1223日,北京首鋼隊(duì)勝了x場(chǎng),則負(fù)(21-x)場(chǎng),根據(jù)在前21輪比賽中,積35分列出方程解答即可.

解:設(shè)截止1223日北京首鋼隊(duì)共勝了x場(chǎng),則負(fù)了(21-x)場(chǎng),

由題意得2x+(21-x)=35,

解得x=14.

答:截止1223日北京首鋼隊(duì)共勝了14場(chǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)與坐標(biāo)軸分別交于點(diǎn)A(0,8)、B(8,0)和點(diǎn)E,動(dòng)點(diǎn)C從原點(diǎn)O開(kāi)始沿OA方向以每秒1個(gè)單位長(zhǎng)度移動(dòng),動(dòng)點(diǎn)D從點(diǎn)B開(kāi)始沿BO方向以每秒1個(gè)單位長(zhǎng)度移動(dòng),動(dòng)點(diǎn)C、D同時(shí)出發(fā),當(dāng)動(dòng)點(diǎn)D到達(dá)原點(diǎn)O時(shí),點(diǎn)C、D停止運(yùn)動(dòng).

(1)直接寫(xiě)出拋物線(xiàn)的解析式: ;

(2)求△CED的面積S與D點(diǎn)運(yùn)動(dòng)時(shí)間t的函數(shù)解析式;當(dāng)t為何值時(shí),△CED的面積最大?最大面積是多少?

(3)當(dāng)△CED的面積最大時(shí),在拋物線(xiàn)上是否存在點(diǎn)P(點(diǎn)E除外),使△PCD的面積等于△CED的最大面積?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一組數(shù)據(jù):57,105,75,6,這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )

A.107B.57C.56D.67

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ACB和△ADE均為等邊三角形,點(diǎn)C、E、D在同一直線(xiàn)上,連接BD. 求證:CE=BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【問(wèn)題提出】

用n根相同的木棒搭一個(gè)三角形(木棒無(wú)剩余),能搭成多少種不同的等腰三角形?

【問(wèn)題探究】

不妨假設(shè)能搭成m種不同的等腰三角形,為探究m與n之間的關(guān)系,我們可以先從特殊入手,通過(guò)試驗(yàn)、觀(guān)察、類(lèi)比、最后歸納、猜測(cè)得出結(jié)論.

【探究一】

(1)用3根相同的木棒搭一個(gè)三角形,能搭成多少種不同的等腰三角形?

此時(shí),顯然能搭成一種等腰三角形.

所以,當(dāng)n=3時(shí),m=1.

(2)用4根相同的木棒搭一個(gè)三角形,能搭成多少種不同的等腰三角形?

只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形.

所以,當(dāng)n=4時(shí),m=0.

(3)用5根相同的木棒搭一個(gè)三角形,能搭成多少種不同的等腰三角形?

若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形.

若分成2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形.

所以,當(dāng)n=5時(shí),m=1.

(4)用6根相同的木棒搭一個(gè)三角形,能搭成多少種不同的等腰三角形?

若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形.

若分成2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形.

所以,當(dāng)n=6時(shí),m=1.

綜上所述,可得:表①

【探究二】

(1)用7根相同的木棒搭一個(gè)三角形,能搭成多少種不同的三角形?

(仿照上述探究方法,寫(xiě)出解答過(guò)程,并將結(jié)果填在表②中)

(2)用8根、9根、10根相同的木棒搭一個(gè)三角形,能搭成多少種不同的等腰三角形?

(只需把結(jié)果填在表②中)

表②

你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進(jìn)行探究,…

【問(wèn)題解決】:

用n根相同的木棒搭一個(gè)三角形(木棒無(wú)剩余),能搭成多少種不同的等腰三角形?(設(shè)n分別等于4k﹣1,4k,4k+1,4k+2,其中k是正整數(shù),把結(jié)果填在表③中)

表③

【問(wèn)題應(yīng)用】:

用2016根相同的木棒搭一個(gè)三角形(木棒無(wú)剩余),能搭成多少種不同的等腰三角形?(寫(xiě)出解答過(guò)程),其中面積最大的等腰三角形每腰用了 根木棒.(只填結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題引入:

(1)如圖①,在△ABC中,點(diǎn)O是∠ABC和∠ACB平分線(xiàn)的交點(diǎn),若∠A=α,則∠BOC= (用α表示);如圖②,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,則∠BOC= (用α表示)

拓展研究:

(2)如圖③,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,請(qǐng)猜想∠BOC= (用α表示),并說(shuō)明理由.

類(lèi)比研究:

(3)BO、CO分別是△ABC的外角∠DBC、∠ECB的n等分線(xiàn),它們交于點(diǎn)O,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,請(qǐng)猜想∠BOC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙O為△ABC的外接圓,圓心O在A(yíng)B上.

(1)在圖1中,用尺規(guī)作圖作∠BAC的平分線(xiàn)AD交⊙O于D(保留作圖痕跡,不寫(xiě)作法與證明);

(2)如圖2,設(shè)∠BAC的平分線(xiàn)AD交BC于E,⊙O半徑為5,AC=4,連接OD交BC于F.

①求證:OD⊥BC;

②求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為2的小正方形和邊長(zhǎng)為x的大正方形放在一起.

(1)用x表示陰影部分的面積;
(2)計(jì)算當(dāng)x=5時(shí),陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

小偉遇到這樣一個(gè)問(wèn)題:如圖1,在△ABC(其中∠BAC是一個(gè)可以變化的角)中,AB=2,AC=4,以BC為邊在BC的下方作等邊△PBC,求AP的最大值.

小偉是這樣思考的:利用變換和等邊三角形將邊的位置重新組合.他的方法是以點(diǎn)B為旋轉(zhuǎn)中心將△ABP逆時(shí)針旋轉(zhuǎn)60°得到△A′BC,連接A′A,當(dāng)點(diǎn)A落在A(yíng)′C上時(shí),此題可解(如圖2).

(1)請(qǐng)你回答:AP的最大值是

(2)參考小偉同學(xué)思考問(wèn)題的方法,解決下列問(wèn)題:

如圖3,等腰Rt△ABC.邊AB=4,P為△ABC內(nèi)部一點(diǎn),請(qǐng)寫(xiě)出求AP+BP+CP的最小值長(zhǎng)的解題思路.

提示:要解決AP+BP+CP的最小值問(wèn)題,可仿照題目給出的做法.把△ABP繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)60,得到△A′BP′.

①請(qǐng)畫(huà)出旋轉(zhuǎn)后的圖形

②請(qǐng)寫(xiě)出求AP+BP+CP的最小值的解題思路(結(jié)果可以不化簡(jiǎn)).

查看答案和解析>>

同步練習(xí)冊(cè)答案