【題目】如圖,在△ABC中,∠B=∠C=40°,BD=CE.
(1)求證:△ABE≌△ACD;
(2)若AB=BE,求∠DAE的度數(shù).
【答案】(1)詳見(jiàn)解析;(2)40°.
【解析】
(1)由題意得BD=CE,得出BE=CD,證出AB=AC,由SAS證明△ABE≌△ACD即可;
(2)由等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出∠BEA=∠EAB=70°,證出AC=CD,由等腰三角形的性質(zhì)得出∠ADC=∠DAC=70°,即可得出∠DAE的度數(shù);
解:(1)∵BD=CE,
∴BCBD=BCCE,即BE=CD,
∵∠B=∠C=40°,
∴AB=AC,
在△ABE和△ACD中,
,
∴△ABE≌△ACD(SAS);
(2)∵∠B=∠C=40°,AB=BE,
∴∠BEA=∠EAB=(180°40°)=70°,
∵BE=CD,AB=AC,
∴AC=CD,
∴∠ADC=∠DAC=(180°40°)=70°,
∴∠DAE=180°∠ADC∠BEA=180°70°70°=40°;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在菱形ABCD中,∠A=120°,點(diǎn)E是BC邊的中點(diǎn),點(diǎn)P是對(duì)角線(xiàn)BD上一動(dòng)點(diǎn),設(shè)PD的長(zhǎng)度為x,PE與PC的長(zhǎng)度和為y,圖2是y關(guān)于x的函數(shù)圖象,其中H是圖象上的最低點(diǎn),則a+b的值為( 。
A.7B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),其中AB=4,∠AOC=120°,P為⊙O上的動(dòng)點(diǎn),連AP,取AP中點(diǎn)Q,連CQ,則線(xiàn)段CQ的最大值為( 。
A. 3 B. 1+ C. 1+3 D. 1+
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)與x軸交于點(diǎn)A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),與y軸交于點(diǎn)C(0,-3),對(duì)稱(chēng)軸是直線(xiàn)x=1,直線(xiàn)BC與拋物線(xiàn)的對(duì)稱(chēng)軸交于點(diǎn)D.
(1)求出拋物線(xiàn)的函數(shù)表達(dá)式;
(2)設(shè)點(diǎn)E時(shí)拋物線(xiàn)上一點(diǎn),且S△ABE=S△ABC,求tan∠ECO的值;
(3)點(diǎn)P在拋物線(xiàn)上,點(diǎn)Q在拋物線(xiàn)對(duì)稱(chēng)軸上,若以B、C、P、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A坐標(biāo)為(2,0),以OA為邊在第一象限內(nèi)作等邊△OAB,C為x軸正半軸上的一個(gè)動(dòng)點(diǎn)(OC>2),連接BC,以BC為邊在第一象限內(nèi)作等邊△BCD,直線(xiàn)DA交y軸于E點(diǎn).
(1)求證:△OBC≌△ABD
(2)隨著C點(diǎn)的變化,直線(xiàn)AE的位置變化嗎?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求出直線(xiàn)AE的解析式.
(3)以線(xiàn)段BC為直徑作圓,圓心為點(diǎn)F,當(dāng)C點(diǎn)運(yùn)動(dòng)到何處時(shí),直線(xiàn)EF∥直線(xiàn)BO;這時(shí)⊙F和直線(xiàn)BO的位置關(guān)系如何?請(qǐng)給予說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)上有兩點(diǎn)M(m+1,a)、N(m,b).
(1)當(dāng)a=-1,m=1時(shí),求拋物線(xiàn)的解析式;
(2)用含a、m的代數(shù)式表示b和c;
(3)當(dāng)a<0時(shí),拋物線(xiàn)滿(mǎn)足,,,
求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】校車(chē)安全是近幾年社會(huì)關(guān)注的重大問(wèn)題,安全隱患主要是超速和超載,某中學(xué)數(shù)學(xué)活動(dòng)小組設(shè)計(jì)了如下檢測(cè)公路上行駛的汽車(chē)速度的實(shí)驗(yàn):先在公路旁邊選取一點(diǎn)C,再在筆直的車(chē)道l上確定點(diǎn)D,使CD與l垂直,測(cè)得CD的長(zhǎng)等于24米,在l上點(diǎn)D的同側(cè)取點(diǎn)A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的長(zhǎng)(結(jié)果保留根號(hào));
(2)已知本路段對(duì)校車(chē)限速為45千米/小時(shí),若測(cè)得某輛校車(chē)從A到B用時(shí)2秒,這輛校車(chē)是否超速?說(shuō)明理由.(參考數(shù)據(jù):≈1.7,≈1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,對(duì)稱(chēng)軸為直線(xiàn)x=1的拋物線(xiàn)經(jīng)過(guò)A(﹣1,0)、C(0,3)兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為B,點(diǎn)D在y軸上,且OB=3OD
(1)求該拋物線(xiàn)的表達(dá)式;
(2)設(shè)該拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn)P的橫坐標(biāo)為t
①當(dāng)0<t<3時(shí),求四邊形CDBP的面積S與t的函數(shù)關(guān)系式,并求出S的最大值;
②點(diǎn)Q在直線(xiàn)BC上,若以CD為邊,點(diǎn)C、D、Q、P為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖.電路圖上有四個(gè)開(kāi)關(guān)A、B、C、D和一個(gè)小燈泡,閉合開(kāi)關(guān)D或同時(shí)閉合開(kāi)關(guān)A,B,C都可使小燈泡發(fā)光.
(1)任意閉合其中一個(gè)開(kāi)關(guān),則小燈泡發(fā)光的概率等于 ;
(2)任意閉合其中兩個(gè)開(kāi)關(guān),請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法求出小燈泡發(fā)光的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com