精英家教網(wǎng)如圖,BC是⊙O的弦,OA⊥BC,∠AOB=70°,則∠ADC的度數(shù)是( 。
A、70°B、35°C、45°D、60°
分析:欲求∠ADC,又已知一圓心角,可利用圓周角與圓心角的關系求解.
解答:解:∵A、B、C、D是⊙O上的四點,OA⊥BC,
∴弧AC=弧AB (垂徑定理),
∴∠ADC=
1
2
∠AOB(等弧所對的圓周角是圓心角的一半);
又∠AOB=70°,
∴∠ADC=35°.
故選B.
點評:本題考查垂徑定理、圓周角定理.關鍵是將證明弧相等的問題轉化為證明所對的圓心角相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,BC是⊙O的弦,點A在⊙O上,AB=AC=10,sin∠ABC=
45

求:(1)弦BC的長;(2)∠OBC的正切的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,BC是⊙O的弦,圓周角∠BAC=50°,則∠OCB的度數(shù)是
40
 度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,BC是⊙O的弦,A是⊙O上一點,OD⊥BC于D,且BD=
3
,∠A=60°,求BC的長及⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,BC是⊙O的弦,OD⊥BC于E,交
BC
于D,點A是優(yōu)弧上的動點(不與B,C重合),BC=4
3
,ED=2.
(1)求⊙O的半徑;
(2)求圖中陰影部分面積的最大值.

查看答案和解析>>

同步練習冊答案