如圖,雙曲線(xiàn)y=與直線(xiàn)y=kx+b交于點(diǎn)M、N,并且點(diǎn)M的坐標(biāo)為(1,3),點(diǎn)N的縱坐標(biāo)為-1.根據(jù)圖象信息可得:
(1)求N點(diǎn)的坐標(biāo);
(2)求反比例函數(shù)和一次函數(shù)的解析式.

【答案】分析:(1)設(shè)N點(diǎn)坐標(biāo)為(a,-1),再根據(jù)反比例函數(shù)中m=xy為定值進(jìn)行解答即可;
(2)根據(jù)(1)中求出的k的值即可得到反比例函數(shù)的解析式;把M、N兩點(diǎn)的坐標(biāo)代入一次函數(shù)解析式即可求出b、k的值,進(jìn)而求出其解析式.
解答:解:(1)設(shè)N點(diǎn)坐標(biāo)為(a,-1),
∵M(jìn)、N兩點(diǎn)均在反比例函數(shù)的圖象上,
∴m=1×3=-a,
∴a=-3,m=3.
∴N(-3,-1);

(2)∵由(1)可知,m=3,
∴此反比例函數(shù)的解析式為:y=;
∵M(jìn)(1,3),N(-3,-1),
,解得
∴此一次函數(shù)的解析式為:y=x+2.
點(diǎn)評(píng):本題考查的是反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題,熟知反比例函數(shù)中k=xy為定值的特點(diǎn)是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直y=mx與雙曲線(xiàn)y=
k
x
交于點(diǎn)A,B.過(guò)點(diǎn)A作AM⊥x軸,垂足為點(diǎn)M,連接BM.若S△ABM=1,則k的值是( 。
A、1B、m-1C、2D、m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,直y=
3
2
x+b
與雙曲線(xiàn)y=
16
x
相交于第一象限內(nèi)的點(diǎn)A,AB、AC分別垂直于x軸、y軸,垂足分別為B、C,已知四邊形ABCD是正方形,求直線(xiàn)所對(duì)應(yīng)的一次函數(shù)的解析式以及它與x軸的交點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

探索函數(shù)y=x+
1
x
(x>0)
的圖象和性質(zhì).
已知函數(shù)y=x(x>0)和y=
1
x
(x>0)
的圖象如圖所示,若P為函數(shù)y=x+
1
x
(x>0)
圖象上的點(diǎn),過(guò)P作PC垂直于x軸且與直線(xiàn)、雙曲線(xiàn)、x軸分別交于點(diǎn)A、B、C,則PC=x+
1
x
=AC+BC,從而“點(diǎn)P可以看作點(diǎn)A的沿豎直方向向上平移BC個(gè)長(zhǎng)度單位(PA=BC)而得到”.
(1)根據(jù)以上結(jié)論,請(qǐng)?jiān)谙聢D中作出函數(shù)y=x+
1
x
(x>0)圖象上的一些點(diǎn),并畫(huà)出該函數(shù)的圖象.
(2)觀察圖象,寫(xiě)出函數(shù)y=x+
1
x
(x>0)兩條不同類(lèi)型的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,直數(shù)學(xué)公式與雙曲線(xiàn)數(shù)學(xué)公式相交于第一象限內(nèi)的點(diǎn)A,AB、AC分別垂直于x軸、y軸,垂足分別為B、C,已知四邊形ABCD是正方形,求直線(xiàn)所對(duì)應(yīng)的一次函數(shù)的解析式以及它與x軸的交點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-反比例函數(shù)的性質(zhì)、k的幾何意義(解析版) 題型:選擇題

如圖,直y=mx與雙曲線(xiàn)y=交于點(diǎn)A,B.過(guò)點(diǎn)A作AM⊥x軸,垂足為點(diǎn)M,連接BM.若S△ABM=1,則k的值是(  )

A. 1   B. m﹣1    C. 2   D. m

 

查看答案和解析>>

同步練習(xí)冊(cè)答案