【題目】如圖,四邊形ABCD的頂點(diǎn)在⊙O上,BD是⊙O的直徑,延長CD、BA交于點(diǎn)E,連接AC、BD交于點(diǎn)F,作AH⊥CE,垂足為點(diǎn)H,已知∠ADE=∠ACB.
(1)求證:AH是⊙O的切線;
(2)若OB=4,AC=6,求sin∠ACB的值;
(3)若,求證:CD=DH.
【答案】(1)證明見解析;(2);(3)證明見解析.
【解析】
(1)連接OA,證明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位線,根據(jù)三角形中位線定理、切線的判定定理證明;
(2)利用正弦的定義計(jì)算;
(3)證明△CDF∽△AOF,根據(jù)相似三角形的性質(zhì)得到CD=CE,根據(jù)等腰三角形的性質(zhì)證明.
(1)證明:連接OA,
由圓周角定理得,∠ACB=∠ADB,
∵∠ADE=∠ACB,
∴∠ADE=∠ADB,
∵BD是直徑,
∴∠DAB=∠DAE=90°,
在△DAB和△DAE中,
,
∴△DAB≌△DAE,
∴AB=AE,又∵OB=OD,
∴OA∥DE,又∵AH⊥DE,
∴OA⊥AH,
∴AH是⊙O的切線;
(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,
∴∠E=∠ACD,
∴AE=AC=AB=6.
在Rt△ABD中,AB=6,BD=8,∠ADE=∠ACB,
∴sin∠ADB==,即sin∠ACB=;
(3)證明:由(2)知,OA是△BDE的中位線,
∴OA∥DE,OA=DE.
∴△CDF∽△AOF,
∴=,
∴CD=OA=DE,即CD=CE,
∵AC=AE,AH⊥CE,
∴CH=HE=CE,
∴CD=CH,
∴CD=DH.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)寫出該二次函數(shù)圖象的對稱軸及頂點(diǎn)坐標(biāo),再描點(diǎn)畫圖;
(2)利用圖象回答:當(dāng)x取什么值時(shí),.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(操作)如圖①,在矩形中,為對角線上一點(diǎn)(不與點(diǎn)重合),將沿射線方向平移到的位置,的對應(yīng)點(diǎn)為.已知(不需要證明).
(探究)過圖①中的點(diǎn)作交延長線于點(diǎn),連接,其它條件不變,如圖②.求證:.
(拓展)將圖②中的沿翻折得到,連接,其它條件不變,如圖③.當(dāng)最短時(shí),若,,直接寫出的長和此時(shí)四邊形的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(2,4),請解答下列問題:
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點(diǎn)A1的坐標(biāo).
(2)畫出△A1B1C1繞原點(diǎn)O旋轉(zhuǎn)180°后得到的△A2B2C2,并寫出點(diǎn)A2的坐標(biāo).
【答案】(1)作圖見解析;點(diǎn)A1的坐標(biāo)(2,﹣4);(2)作圖見解析;點(diǎn)A2的坐標(biāo)(﹣2,4).
【解析】
試題分析:(1)分別找出A、B、C三點(diǎn)關(guān)于x軸的對稱點(diǎn),再順次連接,然后根據(jù)圖形寫出A點(diǎn)坐標(biāo);
(2)將△A1B1C1中的各點(diǎn)A1、B1、C1繞原點(diǎn)O旋轉(zhuǎn)180°后,得到相應(yīng)的對應(yīng)點(diǎn)A2、B2、C2,連接各對應(yīng)點(diǎn)即得△A2B2C2.
試題解析:(1)如圖所示:點(diǎn)A1的坐標(biāo)(2,﹣4);
(2)如圖所示,點(diǎn)A2的坐標(biāo)(﹣2,4).
考點(diǎn):1.作圖-旋轉(zhuǎn)變換;2.作圖-軸對稱變換.
【題型】解答題
【結(jié)束】
18
【題目】觀察下面的點(diǎn)陣圖和相應(yīng)的等式,探究其中的規(guī)律:
(1)認(rèn)真觀察,并在④后面的橫線上寫出相應(yīng)的等式.
①1=1 ②1+2==3 ③1+2+3==6 ④ …
(2)結(jié)合(1)觀察下列點(diǎn)陣圖,并在⑤后面的橫線上寫出相應(yīng)的等式.
1=12②1+3=22③3+6=32④6+10=42⑤ …
(3)通過猜想,寫出(2)中與第n個(gè)點(diǎn)陣相對應(yīng)的等式 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著新冠肺炎的爆發(fā),市場對口罩的需求量急劇增大.某口罩生產(chǎn)商自二月份以來,--直積極恢復(fù)產(chǎn)能,每日口罩生產(chǎn)量(百萬個(gè))與天數(shù)且為整數(shù))的函數(shù)關(guān)系圖象如圖所示,而該生產(chǎn)商對口供應(yīng)市場對口罩的需求量<(百萬個(gè))與天數(shù)呈拋物線型,第天市場口罩缺口(需求量與供應(yīng)量差)就達(dá)到(百萬個(gè)),之后若干天,市場口罩需求量不斷上升,在第天需求量達(dá)到最高峰(百萬個(gè)).
求出與的函數(shù)解析式;
當(dāng)市場供應(yīng)量不小于需求量時(shí),市民買口罩才無需提前預(yù)約,那么在整個(gè)二月份,市民無需預(yù)約即可購買口罩的天數(shù)共有多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=﹣x+5的圖象與函數(shù)y=(k<0)的圖象相交于點(diǎn)A,并與x軸交于點(diǎn)C,S△AOC=15.點(diǎn)D是線段AC上一點(diǎn),CD:AC=2:3.
(1)求k的值;
(2)根據(jù)圖象,直接寫出當(dāng)x<0時(shí)不等式>﹣x+5的解集;
(3)求△AOD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,,點(diǎn)在邊上,與點(diǎn)、不重合,過點(diǎn)作的垂線與的延長線相交于點(diǎn),連結(jié),交于點(diǎn).
(1)當(dāng)為的中點(diǎn)時(shí),求的長;
(2)當(dāng)是以為腰的等腰三角形時(shí),求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E為AB上一點(diǎn),AF⊥DE于點(diǎn)F,已知DF=5EF=5,過C、D、F的⊙O與邊AD交于點(diǎn)G,則DG=( )
A.2B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC=20,tanB=,點(diǎn)D為BC邊上的動(dòng)點(diǎn)(D不與點(diǎn)B,C重合).以D為頂點(diǎn)作∠ADE=∠B,射線DE交AC邊于點(diǎn)E,過點(diǎn)A作AF⊥AD交射線DE于點(diǎn)F,連接CF.
(1)求證:△ABD∽△DCE;
(2)當(dāng)DE∥AB時(shí)(如圖2),求AE的長;
(3)點(diǎn)D在BC邊上運(yùn)動(dòng)的過程中,是否存在某個(gè)位置,使得DF=CF?若存在,求出此時(shí)BD的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com