精英家教網(wǎng)如圖,B為線段AD上一點,△ABC和△BDE都是等邊三角形,連接CE并延長交AD的延長線于點F,△ABC的外接圓⊙O交CF于點P.
(1)求證:BE是⊙O的切線;
(2)若CP=2,PF=8,求AC的長.
分析:要證明BE是切線,連接OB,證明OB⊥BE即可;由角度關(guān)系可得△ACP∽△FCA,進(jìn)而利用線段的比例代入數(shù)值求解AC的長度.
解答:精英家教網(wǎng)(1)證明:連接OB;
∵△ABC和△BDE都是等邊三角形,
∴∠ABC=∠EBD=60°.
∴∠CBE=180°-60°-60°=60°.
又∵∠OBC=
1
2
∠ABC=30°,
∴∠OBE=∠OBC+∠CBE=90°.
即OB⊥BE.
∴BE是⊙O的切線.

(2)解:連接AP;
則∠APC=∠ABC=∠CAF=60°.
又∵∠ACP=∠FCA,
∴△ACP∽△FCA.
AC
CF
=
CP
AC
,即AC2=CF•CP

∵CP=2,PF=8,
∴CF=10.
∴AC2=CF•CP=20.
AC=2
5
點評:熟練掌握切線的性質(zhì),會利用三角形相似求解一些簡單的計算問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,B為線段AD上一點,△ABC和△BDE都是等邊三角形,連接CE并延長交AD的延長線于點F,△ABC的外接圓⊙O交CF于點M.
(1)求證:BE是⊙O的切線;
(2)求證:AC2=CM•CF;
(3)若CM=
2
7
7
,MF=
12
7
7
,求BD;
(4)若過點D作DG∥BE交EF于點G,過G作GH∥DE交DF于點H,則易知△DGH是等邊三角形.設(shè)等邊△ABC、△BDE、△DGH的面積分別為S1、S2、S3,試探究S1、S2、S3之間的等量關(guān)系,請直接寫出其結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,B為線段AD上一點,△ABC和△BDE都是等邊三角形,連接CE精英家教網(wǎng)并延長,交AD的延長線于F,△ABC的外接圓⊙O交CF于點M.
(1)求證:BE是⊙O的切線;
(2)求證:AC2=CM•CF;
(3)過點D作DG∥BE交EF于點G,過G作GH∥DE交DF于點H,則易知△DHG是等邊三角形;設(shè)等邊△ABC、△BDE、△DHG的面積分別為S1、S2、S3,試探究S1、S2、S3之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,C為線段AD上一點,點B為CD的中點,且AD=8cm,BD=2cm.
(1)圖中共有多少條線段?
(2)求AC的長.
(3)若點E在直線AD上,且EA=3cm,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年江蘇省泰州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•泰州)如圖,B為線段AD上一點,△ABC和△BDE都是等邊三角形,連接CE并延長交AD的延長線于點F,△ABC的外接圓⊙O交CF于點M.
(1)求證:BE是⊙O的切線;
(2)求證:AC2=CM•CF;
(3)若CM=,MF=,求BD;
(4)若過點D作DG∥BE交EF于點G,過G作GH∥DE交DF于點H,則易知△DGH是等邊三角形.設(shè)等邊△ABC、△BDE、△DGH的面積分別為S1、S2、S3,試探究S1、S2、S3之間的等量關(guān)系,請直接寫出其結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案