【題目】 “整體思想”是中學(xué)數(shù)學(xué)解題中一種重要的思想方法,它在多項(xiàng)式的化簡(jiǎn)與求值中應(yīng)用極為廣泛.如:已知m+n=﹣2,mn=﹣4,則2(mn﹣3m)﹣3(2n﹣mn)的值為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算正確的是( )
A. (ab)2=ab2 B. 3a+2a2=5a3 C. (a+b)2=a2+b2 D. -(2a2)2·a=-4a5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)等腰三角形的兩邊長(zhǎng)分別為3和5,則它的周長(zhǎng)為( )
A.11
B.12
C.13
D.11或13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】因?yàn)橹苯侨切问翘厥馊切危砸话闳切稳鹊臈l件都可以用來說明2個(gè)直角三角形全等.________(判斷對(duì)錯(cuò))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)閱讀:我們知道, 于是要解不等式,我們可以分兩種情況去掉絕對(duì)值符號(hào),轉(zhuǎn)化為我們熟悉的不等式,按上述思路,我們有以下解法:
解:(1)當(dāng),即時(shí):
解這個(gè)不等式,得:
由條件,有:
(2)當(dāng)< 0,即 x < 3時(shí),
解這個(gè)不等式,得:
由條件x < 3,有: < 3
∴ 如圖, 綜合(1)、(2)原不等式的解為:
根據(jù)以上思想,請(qǐng)?zhí)骄客瓿上铝?個(gè)小題:
(1); (2)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知, , 三點(diǎn),其中滿足關(guān)系式.
(1)求的值;
(2)如果在第二象限內(nèi)有一點(diǎn),那么請(qǐng)用含的式子表示四邊形的面積;
(3)在(2)的條件下,是否存在點(diǎn),使四邊形的面積與三角形的面積相等?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C的坐標(biāo)分別為(10,0),(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上運(yùn)動(dòng),當(dāng)ΔODP是腰長(zhǎng)為5的等腰三角形時(shí),點(diǎn)P的坐標(biāo)為___________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com