【題目】設(shè)A(﹣2,y1),B(1,y2),C(2,y3)是拋物線y=3(x+1)2+4m(m為常數(shù))上的三點(diǎn),則y1,y2,y3的大小關(guān)系為( 。
A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)P(2,3)關(guān)于原點(diǎn)對稱點(diǎn)P′的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD中,∠C=72°,∠D=81°.沿EF折疊四邊形,使點(diǎn)A、B分別落在四邊形內(nèi)部的點(diǎn)A′、B′處,則∠1+∠2=°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求解:已知:如圖1,P為△ADC內(nèi)一點(diǎn),DP、CP分別平分DP、CP分別平分∠ADC和∠ACD。
(1)如果∠A=60°,那么∠P是多少度;如果∠A=90°,那么∠P是多少度;如果∠A=x°,則∠P是多少度?
(2)如圖2,P為四邊形ABCD內(nèi)一點(diǎn),DP、CP分別平分∠ADC和∠BCD,試探究∠P與∠A+∠B的數(shù)量關(guān)系,并寫出你的探索過程;
(3)如圖3,P為五邊形ABCDE內(nèi)一點(diǎn),DP、CP分別平分DP、CP分別平分∠ADC和∠ACD,請直接寫出∠P與∠A+∠B+∠E的數(shù)量關(guān)系。
(4)如圖4,P為六邊形ABCDEF內(nèi)一點(diǎn),DP、CP分別平分DP、CP分別平分∠ADC和∠ACD,請直接寫出∠P與∠A+∠B+∠E+∠F的數(shù)量關(guān)系。
(5)若P為n邊形A1A2A3…An內(nèi)一點(diǎn),PA1平分∠AnA1A2 , PA2平分∠A1A2A3 , 請直接寫出∠P與∠A3+A4+A5+…∠An的數(shù)量關(guān)系。(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知DC∥FP,∠1=∠2,∠FED=28°,∠AGF=80°,F(xiàn)H平分∠EFG.
(1)說明:DC∥AB;
(2)求∠PFH的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC面積為1,第一次操作:分別延長AB,BC,CA至點(diǎn)A1 , B1 , C1 , 使A1B=AB,B1C=BC,C1A=CA,順次連接A1 , B1 , C1 , 得到△A1B1C1 . 第二次操作:分別延長A1B1 , B1C1 , C1A1至點(diǎn)A2 , B2 , C2 , 使A2B1=A1B1 , B2C1=B1C1 , C2A1=C1A1 , 順次連接A2 , B2 , C2 , 得到△A2B2C2 , …按此規(guī)律,要使得到的三角形的面積超過2010,最少經(jīng)過( )次操作.
A.6
B.5
C.4
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,BD是對角線,∠ABD=∠CDB,要使四邊形ABCD是平行四邊形只需添加一個(gè)條件,這個(gè)條件可以是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,若AC=15,BC=13,AB邊上的高CD=12,則△ABC的周長為( )
A.32
B.42
C.32或42
D.以上都不對
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com