【題目】如圖是一根起點(diǎn)為1的數(shù)軸,現(xiàn)有同學(xué)將它彎折,彎折后虛線上第一行的數(shù)是1,第二行的數(shù)是13,第三行的數(shù)是43,…,依此規(guī)律,第五行的數(shù)是( )
A. 183 B. 157 C. 133 D. 91
【答案】B
【解析】
觀察根據(jù)排列的規(guī)律得到:所有的數(shù)字都是奇數(shù),發(fā)生彎折的數(shù)與上一個彎折的數(shù)的差依次是2,4,6,8…,每一行的數(shù)比上次增加連續(xù)的三個偶數(shù).依次計算即可得到結(jié)論.
所有的數(shù)字都是奇數(shù),發(fā)生彎折的數(shù)與上一個彎折的數(shù)的差依次是2,4,6,8…,每一行的數(shù)每次增加連續(xù)的三個偶數(shù).
第一行數(shù)字為1
第二行數(shù)字為1+(2+4+6)=1+2(1+2+3)=1+3×4=13
第三行數(shù)字為1+(2+4+6)+(8+10+12)=1+2(1+2+3+4+5+6)=1+6×7=43
第四行數(shù)字為1+(2+4+6)+(8+10+12)+(14+16+18)=1+2(1+2+3+4+5+6+7+8+9)= 1+9×10=91
第五行數(shù)字為1+(2+4+6)+(8+10+12)+(14+16+18)+(20+22+24)
=1+2(1+2+3+4+5+6+7+8+9+10+11+12)=1+12×13=157.
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩輛汽車沿同一路線從A地前往B地,甲車以a千米時的速度勻速行駛,途中出現(xiàn)故障后停車維修,修好后以2a千米/時的速度繼續(xù)行駛;乙車在甲車出發(fā)2小時后勻速前往B地,比甲車早30分鐘到達(dá).到達(dá)B地后,乙車按原速度返回A地,甲車以2a千米時的速度返回A地.設(shè)甲、乙兩車與A地相距s(千米),甲車離開A地的時間為t(小時),s與t之間的函數(shù)圖象如圖所示,求兩車在途中第二次相遇時t的值_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1;
(2)請畫出△ABC關(guān)于原點(diǎn)對稱的△A2B2C2;
(3)在x軸上求作一點(diǎn)P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過點(diǎn)D,E是⊙O上一點(diǎn),且∠AED=45°.
(1)試判斷CD與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若⊙O的半徑為3,sin∠ADE= ,求AE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司要把240噸白砂糖運(yùn)往某市的A、B兩地,用大小兩種貨車共20輛,恰好能一次性裝完這批白砂糖.已知這兩種大小貨車的載重分別是15噸/輛和10噸/輛,運(yùn)往A地的運(yùn)費(fèi)為:大車630元/輛,小車420元/輛;運(yùn)往B地的運(yùn)費(fèi)為:大車750元/輛,小車550元/輛.
(1)求大小兩種貨車各多少輛.
(2)如果安排10輛貨車前往A地,其中調(diào)往A地的大貨車有a輛,其余貨車前往B地,填寫下表:
前往A地 | 前往B地 | |
大貨車/輛 | a | |
小貨車/輛 |
(3)按照上表的分配方案,若設(shè)總費(fèi)用為W,求W與a的關(guān)系式(用含a的代數(shù)式表示W)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富學(xué)生的課外活動,某校決定購買100個籃球和副羽毛球拍.經(jīng)調(diào)查發(fā)現(xiàn):甲、乙兩個體育用品商店以同樣的價格出售同種品牌的籃球和羽毛球拍.已知每個籃球比每副羽毛球拍貴25元,兩個籃球與三副羽毛球拍的費(fèi)用正好相等.經(jīng)洽談,甲商店的優(yōu)惠方案是:每購買十個籃球,送一副羽毛球拍;乙商店的優(yōu)惠方案是:若購買籃球數(shù)超過80個,則購買羽毛球拍可打八折.
(1)求每個籃球和每副羽毛球拍的價格分別是多少?
(2)請用含的代數(shù)式分別表示出到甲商店和乙商店購買所花的費(fèi)用;
(3)請你決策:在哪家商店購買劃算?(直接寫出結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 中,∠B=60°,∠C=80°,點(diǎn)D,E分別在線段AB,BC 上, 將△BDE 沿直線DE翻折,使B落在B′ 處, B′ D, B′E分別交AC于F,G. 若∠ADF=70°,則∠CGE 的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AB∥DF,∠D+∠B=180°,
(1)求證:DE∥BC;
(2)如果∠AMD=75°,求∠AGC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在七年級下冊“證明”的一章的學(xué)習(xí)中,我們曾做過如下的實驗:
畫∠AOB=90°,并畫∠AOB的平分線OC.
(1)把三角尺的直角頂點(diǎn)落在OC的任意一點(diǎn)P上,使三角尺的兩條直角邊分別與OA、OB相交于點(diǎn)E、F(如圖①).度量PE、PF的長度,這兩條線段相等嗎?
(2)把三角尺繞點(diǎn)P旋轉(zhuǎn)(如圖②),PE與PF相等嗎?請說明理由.
(3)探究:畫∠AOB=50°,并畫∠AOB的平分線OC,在OC上任取一點(diǎn)P,作∠EPF=130°.∠EPF的兩邊分別與OA、OB相交于E、F兩點(diǎn)(如圖③),PE與PF相等嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com