如圖,在平面直角坐標系中,直線y=2x+b(b<0)與坐標軸交于A,B兩點,與雙曲線(x>0)交于D點,過點D作DC⊥x軸,垂足為G,連接OD.已知△AOB≌△ACD.

(1)如果b=﹣2,求k的值;
(2)試探究k與b的數(shù)量關系,并寫出直線OD的解析式.
解:(1)當b=﹣2時,直線y=2x﹣2與坐標軸交點的坐標為A(1,0),B(0,﹣2),
∵△AOB≌△ACD,∴CD=DB=2,AO=AC=1!帱cD的坐標為(2,2)。
∵點D在雙曲線( x>0)的圖象上,∴k=2×2=4。
(2)直線y=2x+b與坐標軸交點的坐標為A(,0),B(0,b),
∵△AOB≌△ACD,∴CD="OB=" b,AO=AC=,
∴點D的坐標為(﹣b,﹣b)。
∵點D在雙曲線( x>0)的圖象上,
,即k與b的數(shù)量關系為:
直線OD的解析式為:y=x。

試題分析:(1)首先求出直線y=2x﹣2與坐標軸交點的坐標,然后由△AOB≌△ACD得到CD=DB,AO=AC,即可求出D坐標,由點D在雙曲線( x>0)的圖象上求出k的值。
(2)首先直線y=2x+b與坐標軸交點的坐標為A(,0),B(0,b),再根據(jù)△AOB≌△ACD得到CD=DB,AO=AC,即可求出D坐標,把D點坐標代入反比例函數(shù)解析式求出k和b之間的關系,進而也可以求出直線OD的解析式。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點M,N,已點M的坐標為(1,3),點N的縱坐標為-1.

(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)當y1≥3時,求x的取值范圍;
(3)求使y1>y2時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,反比例函數(shù)的圖象上有一點A,AB平行于x軸交y軸于點B,△ABO的面積是1,則反比例函數(shù)的解析式是
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某食品加工廠要把600噸方便面包裝后送往災區(qū)。
(1)寫出包裝所需的天數(shù)t天與包裝速度 y 噸/天的函數(shù)關系式;
(2)包裝車間有包裝工120名,每天最多包裝60噸,預計最快需要幾天才能包裝完?
(3)包裝車間連續(xù)工作7天后,為更快地幫助災區(qū)群眾,廠方?jīng)Q定在2天內(nèi)把剩余的方便面全部包裝完畢,問需要調來多少人支援才能完成任務?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點A(1,a)在反比例函數(shù)(x>0)的圖象上,AB垂直于x軸,垂足為點B,將△ABO沿x軸向右平移2個單位長度,得到Rt△DEF,點D落在反比例函數(shù)(x>0)的圖象上.

(1)求點A的坐標;
(2)求k值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

設有反比例函數(shù),(x1,y1),(x2,y2)為其圖象上兩點,若x1<0<x2,y1>y2,則k的取值范圍   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知反比例函數(shù)的圖象與一次函數(shù)的圖象交于A、B兩點,連結AO。

(1)求反比例函數(shù)和一次函數(shù)的表達式;
(2)設點C在y軸上,且與點A、O構成等腰三角形,請直接寫出點C的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2013年浙江義烏12分)如圖1,已知(x>)圖象上一點P,PA⊥x軸于點A(a,0),點B坐標為(0,b)(b>0),動點M是y軸正半軸上B點上方的點,動點N在射線AP上,過點B作AB的垂線,交射線AP于點D,交直線MN于點Q,連結AQ,取AQ的中點為C.

(1)如圖2,連結BP,求△PAB的面積;
(2)當點Q在線段BD上時,若四邊形BQNC是菱形,面積為,求此時P點的坐標;
(3)當點Q在射線BD上時,且a=3,b=1,若以點B,C,N,Q為頂點的四邊形是平行四邊形,求這個平行四邊形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知矩形的面積為8,則它的長y與寬x之間的函數(shù)關系用圖象大致可以表示為
A.B.C.D.

查看答案和解析>>

同步練習冊答案