21、已知:A-2B=7a2-7ab,且B=-4a2+6ab+7.
(1)求A等于多少?
(2)若|a+1|+(b-2)2=0,求A的值.
分析:(1)將B的代數(shù)式代入A-2B中化簡,即可得出A的式子;
(2)根據(jù)非負數(shù)的性質(zhì)解出a、b的值,再代入(1)式中計算.
解答:解:(1)∵A-2B=A-2(-4a2+6ab+7)=7a2-7ab,
∴A=(7a2-7ab)+2(-4a2+6ab+7)=-a2+5ab+14;

(2)依題意得:a+1=0,b-2=0,
a=-1,b=2.
原式A=-(-1)2+5×(-1)×2+14=3.
點評:本題考查了非負數(shù)的性質(zhì)和整式的化簡,初中階段有三種類型的非負數(shù):(1)絕對值;(2)偶次方;(3)二次根式(算術平方根).當它們相加和為0時,必須滿足其中的每一項都等于0.根據(jù)這個結論可以求解這類題目.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(1)計算:(-
1
2
)2+
3
4
-(2-
3
)+|2-
3
|-(π-3.14)0
;
(2)已知7-3a的立方根是-2,3a+b-1的算術平方根是4,求
7a+2b-3
的平方根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

細心算一算
(1)2a5•(-a)2-(-a23•(-7a)
(2)(4x2y+5xy-7x)-(5x2y+4xy+x)
(3)(
12
x2y-2xy+y2)•3xy

(4)(4x3y-6x2y2+12xy3)÷(2xy)
(5)化簡求值:已知25a2-10a+1+|4b+1|=0,求:[(4a+3b)(4a-3b)-(2a-5b)(8a+5b)]÷(-2b)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知a,b,c都是整數(shù),當代數(shù)式7a+2b+3c的值能被13整除時,那么代數(shù)式5a+7b-22c的值是否一定能被13整除,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知11|7a+2b-5c,求證:11|3a-7b+12c.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

已知(3A+2B):(7A+5B)=13:31,那么(13A+12B):(17A+15B)=


  1. A.
    5:4
  2. B.
    4:5
  3. C.
    9:7
  4. D.
    7:9

查看答案和解析>>

同步練習冊答案