【題目】如圖所示,已知在△ABC中,AB=AC,BD和CE分別是∠ABC和∠ACB的角平分線,且BD和CE相交于O點(diǎn).
(1)試說(shuō)明△OBC是等腰三角形;
(2)連接OA,試判斷直線OA與線段BC的關(guān)系,并說(shuō)明理由.
【答案】(1)詳見(jiàn)解析;(2)直線AO垂直平分BC
【解析】
(1)根據(jù)對(duì)邊對(duì)等角得到∠ABC=∠ACB,再結(jié)合角平分線的定義得到∠OBC=∠OCB,從而證明OB=OC;
(2)首先根據(jù)全等三角形的判定和性質(zhì)得到OA平分∠BAC,再根據(jù)等腰三角形的三線合一的性質(zhì)得到直線AO垂直平分BC.
(1)∵ 在△ABC中,AB=AC,
∴ ∠ABC=∠BCA,
∵ BD、CE分別平分∠ABC、∠BCA,
∴ ∠ABD=∠CBD ,∠ACE=∠BCE,
∴ ∠OBC=∠BCO,
∴ OB=OC,
∴ △OBC為等腰三角形;
(2)在△AOB與△AOC中,
∵,
∴△AOB≌△AOC(SSS),
∴∠BAO=∠CAO,∴直線AO垂直平分BC.(等腰三角形頂角的平分線、底邊上的高、底邊上的中線互相重合)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,D為⊙O上一點(diǎn),過(guò)弧BD上一點(diǎn)T作⊙O的切線TC,且TC⊥AD于點(diǎn)C.
(1)若∠DAB=50°,求∠ATC的度數(shù);
(2)若⊙O半徑為2,TC=,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,李強(qiáng)在教學(xué)樓的點(diǎn)P處觀察對(duì)面的辦公大樓,為了求得對(duì)面辦公大樓的高度,李強(qiáng)測(cè)得辦公大樓頂部點(diǎn)A的仰角為30°,測(cè)得辦公大樓底部點(diǎn)B的俯角為37°,已知測(cè)量點(diǎn)P到對(duì)面辦公大樓上部AD的距離PM為30m,辦公大樓平臺(tái)CD=10m.求辦公大樓的高度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin37°≈,tan37°≈,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有A、B兩種手機(jī)上網(wǎng)計(jì)費(fèi)方式,收費(fèi)標(biāo)準(zhǔn)如下表所示:
計(jì)費(fèi)方式 | 月使用費(fèi)/元 | 包月上網(wǎng)時(shí)間/分 | 超時(shí)費(fèi)/(元/分) |
A | 30 | 120 | 0.20 |
B | 60 | 320 | 0.25 |
設(shè)上網(wǎng)時(shí)間為x分鐘,
(1)若按方式A和方式B的收費(fèi)金額相等,求x的值;
(2)若上網(wǎng)時(shí)間x超過(guò)320分鐘,選擇哪一種方式更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合實(shí)踐
如圖①,,垂足分別為點(diǎn),.
(1)求的長(zhǎng);
(2)將所在直線旋轉(zhuǎn)到的外部,如圖②,猜想之間的數(shù)量關(guān)系,直接寫出結(jié)論,不需證明;
(3)如圖③,將圖①中的條件改為:在中,三點(diǎn)在同一直線上,并且,其中為任意鈍角.猜想之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料1:
對(duì)于兩個(gè)正實(shí)數(shù),由于,所以,即,所以得到,并且當(dāng)時(shí),
閱讀材料2:
若,則 ,因?yàn)?/span>,,所以由閱讀材料1可得:,即的最小值是2,只有時(shí),即=1時(shí)取得最小值.
根據(jù)以上閱讀材料,請(qǐng)回答以下問(wèn)題:
(1)比較大小
(其中≥1); -2(其中<-1)
(2)已知代數(shù)式變形為,求常數(shù)的值
(3)當(dāng)= 時(shí),有最小值,最小值為 (直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年.某電動(dòng)車商場(chǎng)為適應(yīng)電動(dòng)車進(jìn)電梯的需求,需要購(gòu)進(jìn)100輛某型號(hào)的小型電動(dòng)車供客戶作宣傳,經(jīng)調(diào)查,該小型電動(dòng)車2015年單價(jià)為2000元,2017年單價(jià)為1620元.
(1)求2015年到2017年該小型電動(dòng)車單價(jià)平均每年降低的百分率;
(2)選購(gòu)期間發(fā)現(xiàn)該小型電動(dòng)車在A,B兩個(gè)廠家有不同的促銷方案,A廠家買十送一,B廠家全場(chǎng)打九折,試問(wèn)去哪個(gè)廠家買更優(yōu)惠?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有兩個(gè)構(gòu)造完全相同(除所標(biāo)數(shù)字外)的轉(zhuǎn)盤A、B.
(1)單獨(dú)轉(zhuǎn)動(dòng)A盤,指向奇數(shù)的概率是 ;
(2)小紅和小明做了一個(gè)游戲,游戲規(guī)定,轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤各一次,兩次轉(zhuǎn)動(dòng)后指針指向的數(shù)字之和為奇數(shù)則小紅獲勝,數(shù)字之和為偶數(shù)則小明獲勝,請(qǐng)用樹(shù)狀圖或列表說(shuō)明誰(shuí)獲勝的可能性大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在兩個(gè)同心圓⊙O中,大圓的弦AB與小圓相交于C,D兩點(diǎn).
(1)求證:AC=BD;
(2)若AC=2,BC=4,大圓的半徑R=5,求小圓的半徑r的值;
(3)若ACBC等于12,請(qǐng)直接寫出兩圓之間圓環(huán)的面積.(結(jié)果保留π)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com