【題目】如圖是一道證明題,李老師已給同學(xué)們講解了思路.請(qǐng)你將過(guò)程和理由補(bǔ)充完整.

已知∠1=2,∠A=E 求證:ADBE

證明:∵∠1=2 (已知)

AC___________________________________________

∴∠3= _______ ___________________________________

又∵∠A=E___________

∴∠A=_________________________

ADBE _________________________________________

【答案】DE 內(nèi)錯(cuò)角相等,兩直線平行 E 兩直線平行,內(nèi)錯(cuò)角相等 已知 3 等量代換 同位角相等,兩直線平行

【解析】

根據(jù)內(nèi)錯(cuò)角相等,兩直線平行可得ACDE,然后根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠3=E,利用等量代換即可證出∠A=3,最后根據(jù)同位角相等,兩直線平行即可證出結(jié)論.

證明:∵∠1=2 (已知)

ACDE(內(nèi)錯(cuò)角相等,兩直線平行)

∴∠3= E(兩直線平行,內(nèi)錯(cuò)角相等)

又∵∠A=E(已知)

∴∠A=3(等量代換)

ADBE (同位角相等,兩直線平行)

故答案為:DE;內(nèi)錯(cuò)角相等,兩直線平行;∠E;兩直線平行,內(nèi)錯(cuò)角相等;已知;∠3;等量代換;同位角相等,兩直線平行.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)課堂上,老師提出問(wèn)題:如圖,如何在該圖形中數(shù)出黑色正方形的個(gè)數(shù),以下是兩位同學(xué)的做法:

1)甲同學(xué)的做法為:

當(dāng)時(shí),黑色正方形的個(gè)數(shù)共有

當(dāng)時(shí),黑色正方形的個(gè)數(shù)共有

當(dāng)時(shí),黑色正方形的個(gè)數(shù)共有

……則在第個(gè)圖形中,黑色正方形的個(gè)數(shù)共有 (無(wú)需化簡(jiǎn))

2)乙同學(xué)的做法為:

當(dāng)時(shí),黑色正方形的個(gè)數(shù)共有

當(dāng)時(shí),黑色正方形的個(gè)數(shù)共有

當(dāng)時(shí),黑色正方形的個(gè)數(shù)共有

……則在第個(gè)圖形中,黑色正方形的個(gè)數(shù)共有 (無(wú)需化簡(jiǎn))

3)數(shù)學(xué)老師及時(shí)肯定了兩位同學(xué)的做法,從而可以得到等式

4)請(qǐng)利用學(xué)習(xí)過(guò)的知識(shí)驗(yàn)證(3)問(wèn)中的等式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC在直角坐標(biāo)系中,

1)請(qǐng)寫出△ABC各點(diǎn)的坐標(biāo).

2)求出△ABC的面積.

3)若把△ABC向上平移2個(gè)單位,再向右平移2個(gè)單位得△ABC′,在圖中畫出△ABC變化位置。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)形結(jié)合"是一種重要的數(shù)學(xué)思想,觀察下面的圖形和算式.

解答下列問(wèn)題:

(1)試猜想1+3+5+7+9+…+19=______=( );

(2)試猜想,當(dāng)n是正整數(shù)時(shí),1+3+5+7+9+…+(2n-1)=

(3)請(qǐng)用(2)中得到的規(guī)律計(jì)算:19+21+23+25+27+…+99.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等邊△ABC的邊長(zhǎng)是2,以BC邊上的高AB1為邊作等邊三角形,得到第一個(gè)等邊△AB1C1;再以等邊△AB1C1B1C1邊上的高AB2為邊作等邊三角形,得到第二個(gè)等邊△AB2C2;再以等邊△AB2C2B2C2邊上的高AB3為邊作等邊三角形,得到第三個(gè)等邊△AB3C3;…,記△B1CB2的面積為S1,B2C1B3的面積為S2,B3C2B4的面積為S3,如此下去,則Sn=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將長(zhǎng)方形紙片ABCD折疊,使邊DC落在對(duì)角線AC上,折痕為CE,且D點(diǎn)落在對(duì)角線D′處.若AB=3,AD=4,則ED的長(zhǎng)為

A B3 C1 D

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為線段上一動(dòng)點(diǎn),分別過(guò)點(diǎn),,連接.已知,設(shè).

(1)用含的代數(shù)式表示的值;

(2)探究:當(dāng)點(diǎn)滿足什么條件時(shí),的值最小?最小值是多少?

(3)根據(jù)(2)中的結(jié)論,請(qǐng)構(gòu)造圖形求代數(shù)式的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了落實(shí)黨的精準(zhǔn)扶貧政策,A、B兩城決定向C、D兩鄉(xiāng)運(yùn)送肥料以支持農(nóng)村生產(chǎn),已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為20/噸和25/噸;從B城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為15/噸和24/噸.現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.

(1)A城和B城各有多少噸肥料?

(2)設(shè)從A城運(yùn)往C鄉(xiāng)肥料x噸,總運(yùn)費(fèi)為y元,求出最少總運(yùn)費(fèi).

(3)由于更換車型,使A城運(yùn)往C鄉(xiāng)的運(yùn)費(fèi)每噸減少a(0<a<6)元,這時(shí)怎樣調(diào)運(yùn)才能使總運(yùn)費(fèi)最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB═2,AD=,PBC邊上的一點(diǎn),且BP=2CP.

(1)用尺規(guī)在圖①中作出CD邊上的中點(diǎn)E,連接AE、BE(保留作圖痕跡,不寫作法);

(2)如圖②,在(1)的條體下,判斷EB是否平分∠AEC,并說(shuō)明理由;

(3)如圖③,在(2)的條件下,連接EP并廷長(zhǎng)交AB的廷長(zhǎng)線于點(diǎn)F,連接AP,不添加輔助線,PFB能否由都經(jīng)過(guò)P點(diǎn)的兩次變換與PAE組成一個(gè)等腰三角形?如果能,說(shuō)明理由,并寫出兩種方法(指出對(duì)稱軸、旋轉(zhuǎn)中心、旋轉(zhuǎn)方向和平移距離)

查看答案和解析>>

同步練習(xí)冊(cè)答案