【題目】如圖,利用函數(shù)y=x2﹣4x+3的圖象,直接回答:
(1)方程x2﹣4x+3=0的解是 ;
(2)當x滿足 時,函數(shù)值大于0.
(3)當0<x<5時,y的取值范圍是 .
【答案】(1)x1=1,x2=3;(2)x<1或x>3;(3)﹣1≤y<8.
【解析】
(1)根據(jù)方程x2﹣4x+3=0的解就是拋物線與x軸交點的橫坐標可得答案;
(2)結合函數(shù)圖象寫出拋物線在x軸上方所對應的自變量的范圍即可;
(3)先分別計算出x=0和x=5對應的函數(shù)值,再利用配方法得到當x=2時,y有最小值﹣1,然后結合函數(shù)圖象求解.
(1)∵拋物線與x軸的交點坐標為(1,0),(3,0),
∴方程x2﹣4x+3=0的解是x1=1,x2=3;
(2)由函數(shù)圖象可知:當x<1或x>3時,y>0;
(3)當x=0時,y=x2﹣4x+3=3;當x=5時,y=x2﹣4x+3=25﹣20+3=8,
∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴當x=2時,y有最小值﹣1,
∴當0<x<5時,y的取值范圍為﹣1≤y<8.
科目:初中數(shù)學 來源: 題型:
【題目】已知:在正方形ABCD和正方形DEFG中,頂點B、D、F在同一直線上,H是BF的中點.
(1)如圖①,若AB=1,DG=2,求BH的長;
(2)如圖②,連接AH、GH,求證:AH=GH且AH⊥GH.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于拋物線y=x2-(a+1)x+a-2,下列說法錯誤的是( 。
A. 開口向上 B. 當a=2時,經(jīng)過坐標原點O
C. a>0時,對稱軸在y軸左側 D. 不論a為何值,都經(jīng)過定點(1,-2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知Rt△AOB的兩條直角邊0A、08分別在y軸和x軸上,并且OA、OB的長分別是方程x2—7x+12=0的兩根(OA<0B),動點P從點A開始在線段AO上以每秒l個單位長度的速度向點O運動;同時,動點Q從點B開始在線段BA上以每秒2個單位長度的速度向點A運動,設點P、Q運動的時間為t秒.
(1)求A、B兩點的坐標。
(2)求當t為何值時,△APQ與△AOB相似,并直接寫出此時點Q的坐標.
(3)當t=2時,在坐標平面內(nèi),是否存在點M,使以A、P、Q、M為頂點的四邊形是平行四邊形?若存在,請直接寫出M點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知實數(shù)a,b滿足a﹣b=1,a2﹣ab+1>0,當2≤x≤3時,二次函數(shù)y=a(x﹣1)2+1(a≠0)的最大值是3,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象過點(﹣2,0),對稱軸為直線x=1.有以下結論:①abc>0;②7a+c<0;③a+b≤m(am+b)(m為任意實數(shù))④若A(x1,m),B(x2,m)是拋物線上的兩點,當x=x1+x2時,y=c;⑤若方程a(x+2)(4﹣x)=﹣1的兩根為x1,x2,且x1<x2,則﹣2≤x1<x2<4.其中正確結論的個數(shù)有( 。
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c圖象經(jīng)過(0,0)、(1,1)、(1,9)三點,下列性質(zhì)錯誤的是( )
A.開口向上B.對稱軸在y軸左側
C.經(jīng)過第四象限D.當x>0,y隨x增大而增大
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠C=90°,AC=4cm,BC=5cm,D在BC上,且CD=3cm,現(xiàn)有兩個動點P、Q分別從點A和點B同時出發(fā),其中點P以1cm/s的速度,沿AC向終點C移動;點Q以cm/s的速度沿BC向終點C移動.過點P作PE∥BC交AD于點E,連接EQ.設動點運動時間為x秒.
(1)周含x的代表數(shù)式表示AE、DE的長度;
(2)當點Q在BD(不包括點B、D)上移動時,設△EDQ的面積為y(cm),求y與x的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)當x為何值時,△EDQ為直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABN中,∠B =90°,點M是AB上的動點(不與A,B兩點重合),點C是BN延長線上的動點(不與點N重合),且AM=BC,CN=BM,連接CM與AN交于點P.
(1)在圖1中依題意補全圖形;
(2)小偉通過觀察、實驗,提出猜想:在點M,N運動的過程中,始終有∠APM=45°.小偉把這個猜想與同學們進行交流,通過討論,形成了證明該猜想的一種思路:
要想解決這個問題,首先應想辦法移動部分等線段構造全等三角形,證明線段相等,再構造平行四邊形,證明線段相等,進而證明等腰直角三角形,出現(xiàn)45°的角,再通過平行四邊形對邊平行的性質(zhì),證明∠APM=45°.
他們的一種作法是:過點M在AB下方作MDAB于點M,并且使MD=CN.通過證明△AMD△CBM,得到AD=CM,再連接DN,證明四邊形CMDN是平行四邊形,得到DN=CM,進而證明△ADN是等腰直角三角形,得到∠DNA=45°.又由四邊形CMDN是平行四邊形,推得∠APM=45°.使問題得以解決.
請你參考上面同學的思路,用另一種方法證明∠APM=45°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com