解:(1)△CBE可以看成是由△CDQ沿逆時針旋轉(zhuǎn)90°得到的;
(2)∵△CBE≌△CDQ,正方形的邊長為1,
∴AQ=1-DQ=1-BE,AP=1-BP,
又∵AP+AQ+PQ=2,
∴1-BE+1-BP+PQ=2,即2-PE+PQ=2,
∴PE=PQ;
(3)∵△CBE≌△CDQ,
∴QC=EC,
在△PCQ和△PCE中,
∴△PCQ≌△PCE(SSS);
(4)∵△PCQ≌△PCE,
∴∠PCQ=∠PCE,
又∵∠BCE=∠QCD,
∴∠QCD+∠PCB=∠PCQ,
又∵∠DCB=90°,
∴∠PCQ=
×90°=45°;
(5)若Q為AD中點,得到DQ=AQ=
AD=
,
∵△PCQ≌△PCE,∴BE=DQ=
,
設(shè)BP=x,則AP=1-x,
∵△PCQ≌△PCE,∴QP=PE=PB+BE=x+
,
在Rt△APQ中,根據(jù)勾股定理得:PQ
2=AQ
2+AP
2,
即(x+
)
2=(
)
2+(1-x)
2,
化簡得:x
2+x+
=
+1-2x+x
2,即3x=1,解得x=
,
則BP的長為
.
分析:(1)△CBE可以看成是由△CDQ旋轉(zhuǎn)得到的;
(2)由旋轉(zhuǎn)可知△CEB≌△CDQ,根據(jù)全等三角形的對應(yīng)邊相等得到DQ=BE,由正方形的變成為1易知AQ=1-DQ=1-BE,AP=1-BP,又有△APQ的周長為2,可求出PQ=PE;
(3)由(2)得到的PQ=PE,由△CEB≌△CDQ得到一對對應(yīng)邊相等,再由CP為公共邊,根據(jù)SSS判定△PCQ≌△PCE;
(4)利用△PCQ≌△PCE得出∠PCQ=∠PCE,又有∠BCE=∠QCD,得出∠PCQ的度數(shù)是∠DCB度數(shù)的一半,由∠DCB為直角即可求出∠PCQ的度數(shù);
(5)由Q為AD的中點,根據(jù)正方形的邊長為1,求出DQ與AQ的長,又△CEB≌△CDQ,得到BE=DQ,從而求出BE的長,再由△PCQ≌△PCE得到PE=PQ,設(shè)PB為x,用PB+BE表示出PE即為PQ的長,且表示出AP的長,在直角三角形APQ中,根據(jù)勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,即為BP的長.
點評:本題考查了圖形的旋轉(zhuǎn)、全等三角形的判定與性質(zhì)、正方形的性質(zhì)等知識.要求學(xué)生掌握圖形的三種變換:平移、旋轉(zhuǎn)、軸對稱都只是改變圖形的位置,不改變形狀和大小,從而由旋轉(zhuǎn)得到△CBE≌△CDQ,是本題的突破點,第四問利用轉(zhuǎn)化的思想來求解,第五問在求BP長時,利用勾股定理列出方程,利用方程的思想來求解.