【題目】如圖,ABO的直徑,點C下方的一動點,連結(jié)OC,過點OODOCBC于點D,過點CAB的垂線,垂足為F,交DO的延長線于點E

1)求證:ECED

2)當(dāng)OEOD,AB4時,求OE的長.

3)設(shè)x,tanBy

y關(guān)于x的函數(shù)表達式;

若△COD的面積是△BOD的面積的3倍,求y的值.

【答案】1)見解析;(2OE;(3y0x1),y

【解析】

1)先證明∠ECD=EDC,即可證明ECED;

2)先證明△ECD是等邊三角形,即可說明∠E=60°,然后再說明EOC是直角三角形,最后解直角三角形即可;

3)①連接AC.先證明x,再證得;OC=k,則OF=kx,然后再利用勾股定理求得CFAF,即可求得函數(shù)解析式;

②作OHBCH,設(shè)BD=m,根據(jù)相似三角形的性質(zhì)用m表示出OH、BH,然后代入函數(shù)解析式即可.

1)證明:∵ODOC,

∴∠COD90°,

∴∠OCD+ODC90°,

ECAB,

∴∠CEB90°,

∴∠B+ECB90°,

OCOB,

∴∠B=∠OCD,

∴∠ODC=∠ECB,

ECEB

2)解:∵OEODOCED,

CECE

ECED,

ECEDCD,

∴△ECD是等邊三角形,

∵∠E60°,

RtEOC中,

∵∠EOC90°,OCAB2,

OE

3)解:連接AC

ECED,∠EOC90°

sinECO,

∵∠OFC90°,

sinECO,

x

AB是直徑,

∴∠ACB90°,

CEAB,

∴∠AFC90°,

∴∠ACF+A90°,∠B+A90°,

∴∠ACF=∠B,

tanBtanACFy,

OCk,則OFkx,CFk

AFOAOFkkxk1x),

y0x1).

OHBCH.設(shè)BDm,

∵△COD的面積是△BOD的面積的3倍,

CD3BD3m,CB4m

OHBC,

CHBH2m,

HDm

∵∠OCH+COH90°,∠COH+DOH90°,

∴∠OCH=∠DOH,

∵∠OHC=∠OHD90°,

∴△OHC∽△DHO,

,

OH22m2,

OHm,

ytanB

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形是邊長為的正方形,長方形的寬,長.將長方形繞點順時針旋轉(zhuǎn)15°得到長方形(如圖所示),這時相交于點.則在圖中,,兩點間的距離是(

A.B.5C.D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請閱讀以下材料,并完成相應(yīng)任務(wù):

斐波那契(約1170-1250)是意大利數(shù)學(xué)家.1202年,撰寫了《算盤書》一書,他是第一個研究了印度和阿拉伯?dāng)?shù)學(xué)理論的歐洲人,他還曾在埃及、敘利亞、希臘,以及意大利西西里和法國普羅旺斯等地研究數(shù)學(xué).他研究了一列非常奇妙的數(shù):0,11,2,3,58,13,21,34,55,89144……這列數(shù),被稱為斐波那契數(shù)列.其特點是從第3項開始,每一項都等于前兩項之和,斐波那契數(shù)列還有很多有趣的性質(zhì),在實際生活中也有廣泛的應(yīng)用.

任務(wù):(1)填寫下表并寫出通過填表你發(fā)現(xiàn)的規(guī)律:

2

3

4

5

6

7

8

9

這一項的平方

1

1

4

9

25

________

_______

441

這一項的前、后兩項的積

0

2

3

10

24

_______

_______

442

規(guī)律:_____________;

2)現(xiàn)有長為的鐵絲,要截成小段,每段的長度不小于,如果其中任意三小段都不能拼成三角形,則的最大值為___________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,且AB6.C是⊙O上的一動點,連接ACBC,在AC的延長線上取一點D,使得∠CBD=∠DAB,點GDB的中點,點EBG的中點,連接AEBC于點F.

(1)試判斷直線BD與⊙O的位置關(guān)系,并說明理由;

(2)當(dāng)∠CGB60°時,求的長;

(3)當(dāng)AECG時,連接GF,若AF4,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為了解全校2000名學(xué)生到校上學(xué)的方式,在全校隨機抽取了若干名學(xué)生進行問卷調(diào)查.問卷給出了五種上學(xué)方式供學(xué)生選擇,每人只能選一項,且不能不選,將調(diào)查得到的結(jié)果繪制成如圖所示的統(tǒng)計圖和頻數(shù)表(均不完整).

到校方式

頻數(shù)

頻率

自行車

24

0.3

步行

公交車

0.325

私家車

10

其他

4

由圖表中給出的信息回答下列問題:

1)問:在這次調(diào)查中,一共抽取了多少名學(xué)生?

2)補全頻數(shù)分布直方圖.

3)估計全校所有學(xué)生中有多少人步行上學(xué).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只不透明的袋子中裝有2個白球、1個紅球、1個黃球,這些球除顏色外都相同,將球攪勻.

1)從中任意摸出1個球,恰好是白球的概率是 ;

2)從中任意摸出2個球,求2個球都是白球的概率(用畫樹狀圖或列表等方法求解).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知下列命題:①若=-a,則a≤0;②若a>,則a2>b2;③兩個位似圖形一定是相似圖形;④平行四邊形的兩組對邊分別相等.其中原命題與逆命題均為真命題的個數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四種說法:

如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等;

2020減去它的,再減去余下的,再減去余下的,再減去余下的,……,依此類推,直到最后減去余下的,最后的結(jié)果是1;

實驗的次數(shù)越多,頻率越靠近理論概率;

對于任何實數(shù)x、y,多項式的值不小于2.其中正確的個數(shù)是()

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD=AB,BAD的平分線交BC于點E,DHAE于點H,連接BH并延長交CD于點F,連接DEBF于點O,下列結(jié)論:①∠AED=CED;OE=OD;BH=HF;BC﹣CF=2HE;AB=HF,其中正確的有(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

同步練習(xí)冊答案