【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,過點(diǎn)A作AD平分∠BAC,交⊙O于點(diǎn)D,過點(diǎn)D作DE∥BC交AC的延長線于點(diǎn)E.
(1)依據(jù)題意,補(bǔ)全圖形(尺規(guī)作圖,保留痕跡);
(2)判斷并證明:直線DE與⊙O的位置關(guān)系;
(3)若AB=10,BC=8,求CE的長.
【答案】(1)見解析;(2) 直線DE是⊙O的切線,證明見解析;(3)2.3或4.2
【解析】
(1)依據(jù)題意,利用尺規(guī)作圖技巧補(bǔ)全圖形即可;
(2)由題意連結(jié)OD,交BC于F,判斷并證明OD⊥DE于D以此證明直線DE與⊙O的位置關(guān)系;
(3)由題意根據(jù)相關(guān)條件證明平行四邊形CFDE是矩形,從而進(jìn)行分析求解.
(1)如圖.
(2)判斷:直線DE是⊙O的切線.
證明:連結(jié)OD,交BC于F.
∵AD平分∠BAC,
∴∠BAD=∠CAD.
∴.
∴OD⊥BC于F.
∵DE∥BC,
∴OD⊥DE于D.
∴直線DE是⊙O的切線.
(3)∵AB是⊙O的直徑,
∴∠ACB=90°.
∵AB=10,BC=8,
∴AC=6.
∵∠BOF=∠ACB=90°,
∴OD∥AC.
∵O是AB中點(diǎn),
∴OF==3.
∵OD==5,
∴DF=2.
∵DE∥BC,OD∥AC,
∴四邊形CFDE是平行四邊形.
∵∠ODE=90°,
∴平行四邊形CFDE是矩形.
∴CE=DF=2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】AE為⊙O的直徑,D為的中點(diǎn),過E點(diǎn)的切線交AD的延長線于F.
(1)求證:∠AEB=2∠F;
(2)若AD=2,DF=4,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AB為⊙O的直徑,C為⊙O上一點(diǎn),連接CB,過C作CD⊥AB于點(diǎn)D,過點(diǎn)C作∠BCE,使∠BCE=∠BCD,其中CE交AB的延長線于點(diǎn)E.
(1)求證:CE是⊙O的切線.
(2)如圖2,點(diǎn)F在⊙O上,且滿足∠FCE=2∠ABC,連接AF井延長交EC的延長線于點(diǎn)G.
①試探究線段CF與CD之間滿足的數(shù)量關(guān)系;
②若CD=4,BD=2,求線段FG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,對角線AC、BD相交于點(diǎn)O,E為OC上動點(diǎn)(與點(diǎn)O不重合),作AF⊥BE,垂足為G,交BC于F,交B0于H,連接OG,CC.
(1)求證:AH=BE;
(2)試探究:∠AGO的度數(shù)是否為定值?請說明理由;
(3)若OG⊥CG,BG=,求△OGC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點(diǎn)E作⊙O的切線交AB的延長線于F,切點(diǎn)為G,連接AG交CD于K.
(1)如圖1,求證:KE=GE;
(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;
(3)如圖3,在(2)的條件下,連接CG交AB于點(diǎn)N,若sinE=,AK=,求CN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,面積為6的菱形AOBC的兩點(diǎn)A,B在反比例函數(shù)(x>0)的圖象上,則點(diǎn)C的坐標(biāo)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在正方形網(wǎng)格中,小正方形的邊長均為1,三角形的頂點(diǎn)都在格點(diǎn)上,則與△ABC相似的三角形所在的網(wǎng)格圖形是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請補(bǔ)充完整.
(1)自變量的取值范圍是全體實(shí)數(shù),與的幾組對應(yīng)值列表如下:其中, .
…… | 0 | 1 | 2 | 3 | …… | ||||||
…… | 3 | 0 | 0 | 3 | …… |
(2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),已畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分;
(3)觀察函數(shù)圖象,寫出一條函數(shù)的性質(zhì): ;
(4)觀察函數(shù)圖象發(fā)現(xiàn):若關(guān)于的方程有4個實(shí)數(shù)根,則的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com