如圖,已知二次函數(shù)y=ax2-2ax+3的圖象與x軸交于點A,點B,與y軸交于點C,其頂點為D,直線DC的函數(shù)關系式為y=kx+b,又tan∠OBC=1.
(1)求二次函數(shù)的解析式和直線DC的函數(shù)關系式;
(2)求△ABC的面積.
(1)設x=0,代入y=ax2-2ax+3,則y=3,
∴拋物線和y軸的交點為(0,3)
∵tan∠OBC=1
∴OB=OC=3
∴B(3,0)
將B(3,0)代入y=ax2-2ax+3=9a-6a+3=0,
∴a=-1
∴y=-x2+2x+3
∴y=-(x-1)2+4
∴D(1,4),A(-1,0)
將D(1,4)和C(0,3)分別代入y=kx+b得:
∴k=1,b=3,
∴y=x+3;

(2)S△ABC=
1
2
×4×3=6.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy內,拋物線y=-x2+bx+c與x軸交于A、B兩點,與y軸交于點C.把直線y=-x-3沿y軸翻折后恰好經過B、C兩點.
(1)求拋物線的解析式;
(2)設拋物線的頂點為D,在坐標軸上是否存在這樣的點F,使得∠DFB=∠DCB?若存在,求出點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

暑假期間,北關中學對網(wǎng)球場進行了翻修,在水平地面點A處新增一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行線路是一條拋物線(如圖所示),在地面上落點為B.有同學在直線AB上點C(靠點B一側)豎直向上擺放無蓋的圓柱形桶,試圖讓網(wǎng)球落入桶內,已知AB=4m,AC=3m,網(wǎng)球飛行最大高度OM=5m,圓柱形桶的直徑為0.5m,高為0.3m(網(wǎng)球的體積和圓柱形桶的厚度忽略不計),以M點為頂點,拋物線對稱軸為y軸,水平地面為x軸建立平面直角坐標系.
(1)請求出拋物線的解析式;
(2)如果豎直擺放5個圓柱形桶時,網(wǎng)球能不能落入桶內?
(3)當豎直擺放圓柱形桶多少個時,網(wǎng)球可以落入桶內?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知直線y=x與拋物線y=
1
2
x2
交于A、B兩點.
(1)求交點A、B的坐標;
(2)記一次函數(shù)y=x的函數(shù)值為y1,二次函數(shù)y=
1
2
x2
的函數(shù)值為y2.若y1>y2,求x的取值范圍;
(3)在該拋物線上存在幾個點,使得每個點與AB構成的三角形為等腰三角形?并求出不少于3個滿足條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx(a>0)與雙曲線y=
k
x
相交于點A,B.已知點A的坐標為(1,4),點B在第三象限內,連結AB交y軸于點E,且S△BOE=
2
3
S△AOB(O為坐標原點).
(1)求此拋物線的函數(shù)關系式;
(2)過點A作直線平行于x軸交拋物線于另一點C.問在y軸上是否存在點P,使△POC與△OBE相似,若存在,求出點P的坐標;若不存在,請簡要說明理由;
(3)拋物線與x軸的負半軸交于點D,過點B作直線ly軸,點Q在直線l上運動,且點Q的縱坐標為t,試探索:當S△AOB<S△QOD<S△BOC時,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c與y軸的交點為C,頂點為M,直線CM的解析式y(tǒng)=-x+2并且線段CM的長為2
2

(1)求拋物線的解析式;
(2)設拋物線與x軸有兩個交點A(x1,0)、B(x2,0),且點A在B的左側,求線段AB的長;
(3)若以AB為直徑作⊙N,請你判斷直線CM與⊙N的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在△ABC中,∠ACB=90°,點A的坐標為(0,2),點B(-3,1)在拋物線y=ax2+ax-2上,點C在x軸上.
(1)求a的值;
(2)求點C的坐標;
(3)若△ABC是等腰直角三角形
①如圖1,將△ABC繞頂點A逆時針方向旋轉β°(0<β<180°)得到△AB′C′,當點C′(2,1)恰好落在該拋物線上,請你通過計算說明點B′也在該拋物線上.
②如圖2,設拋物線與y軸的交點為D、P、Q兩點同時從D點出發(fā),點P沿折線D→C→B運動到點B,點Q沿拋物線(在第二、三象限的部分)運動到點B,若P、Q兩點的運動速度相同,請問誰先到達點B,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=
1
2
x2-
3
2
x-9
與x軸交于A、B兩點,與y軸交于點C,連接BC、AC.
(1)求AB和OC的長;
(2)點E從點A出發(fā),沿x軸向點B運動(點E與點A、B不重合),過點E作直線l平行BC,交AC于點D.設AE的長為m,△ADE的面積為s,求s關于m的函數(shù)關系式,并寫出自變量m的取值范圍;
(3)在(2)的條件下,連接CE,求△CDE面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,把矩形COAB繞點C順時針旋轉α角,得到矩形CFED.設FC與AB交于點H,且A(0,4),C(6,0)(如圖1).
(1)當α=60°時,△CBD的形狀是______;
(2)當AH=HC時,求直線FC的解析式;
(3)當α=90°時,(如圖2).請?zhí)骄浚航涍^點D,且以點B為頂點的拋物線,是否經過矩形CFED的對稱中心M,并說明理由.

查看答案和解析>>

同步練習冊答案