因為數(shù)學公式,所以x________-3(填“>”或“<”).依據(jù)是________.

<    不等式性質(zhì)3
分析:根據(jù)不等式的基本性質(zhì)3在不等式的兩邊同時乘以-3即可.
解答:不等式兩邊同時乘以-3得,x<-3.
故答案為:-3,不等式的基本性質(zhì)3.
點評:本題考查的是不等式的基本性質(zhì)3,即不等式兩邊乘(或除以)同一個負數(shù),不等號的方向改變.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)利用三角形內(nèi)角和,探究四邊形內(nèi)角和:
如圖,∠A、∠B、∠C、∠D是四邊形的四個內(nèi)角,連接AC,因為
 
,所以
 
,即四邊形內(nèi)角和為
 

利用上述結論解題:四邊形ABCD中,∠A=140°,∠D=80°.
(1)如圖1,若∠B=∠C,試求出∠C的度數(shù);
(2)如圖2,若∠ABC的角平分線BE交DC于點E,且BE∥AD,試求出∠C的度數(shù);
(3)如圖3,若∠ABC和∠BCD的角平分線交于點E,試求出∠BEC的度數(shù).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料:
(1)等高線概念:在地圖上,我們把地面上海拔高度相同的點連成的閉合曲線叫等高線,
例如,如圖1,把海拔高度是50米,100米,150米的點分別連接起來,就分別形
成50米,100米,150米三條等高線.
(2)利用等高線地形圖求坡度的步驟如下:(如圖2)
步驟一:根據(jù)兩點A,B所在的等高線地形圖,分別讀出點A,B的高度;A,B兩點的
鉛直距離=點A,B的高度差;
步驟二:量出AB在等高線地形圖上的距離為d個單位,若等高線地形圖的比例尺為
1:m,則A,B兩點的水平距離=dn;
步驟三:AB的坡度=
鉛直距離
水平距離
=
點A,B的高度差
dn1
;
請按照下列求解過程完成填空.
某中學學生小明和小丁生活在山城,如圖3,小明每天上學從家A經(jīng)過B沿著公路AB,BP到學校P,小丁每天上學從家C沿著公路CP到學校P.該山城等高線地形圖的比例尺為:1:50000,在等高線地形圖上量得AB=1.8厘米,BP=3.6厘米,CP=4.2厘米
(1)分別求出AB,BP,CP的坡度(同一段路中間坡度的微小變化忽略不計);
(2)若他們早晨7點同時步行從家出發(fā),中途不停留,誰先到學校?(假設當坡度在
1
10
1
8
之間時,小明和小丁步行的平均速度均約為1.3米/秒;當坡度在
1
8
1
6
之間
時,小明和小丁步行的平均速度均約為1米/秒)
解:(1)AB的水平距離=1.8×50000=90000(厘米)=900(米),AB的坡度=
200-100
900
=
1
9
;
BP的水平距離=3.6×50000=180000(厘米)=1800(米),BP的坡度=
400-200
1800
=
1
9
;
CP的水平距離=4.2×50000=210000(厘米)=2100(米),CP的坡度=
 

(2)因為
1
10
1
9
1
8
,所以小明在路段AB,BP上步行的平均速度均約為1.3米/秒,因為
 
,所以小丁在路段CP上步行的平均速度約為
 
米/秒,斜坡AB的距離=
9002+1002
=906(米),斜坡BP的距離=
18002+2002
=1811(米),斜坡CP的距離=
21002+3002
=2121(米),所以小明從家道學校的時間=
906+1811
1.3
=2090(秒).小丁從家到學校的時間約為
 
秒.因此,
 
先到學校.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計劃修建鐵路1200km,那么鋪軌天數(shù)y(天)是每日鋪軌量x的反比例函數(shù)嗎?解:因為
 
,所以y是x的反比例函數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在銳角三角形ABC中,BC=10,BC邊上的高AM=6,D,E分別是邊AB,AC上的兩個動點(D不與A,B重合),且保持DE∥BC,以DE為邊,在點A的異側作正方形DEFG.
精英家教網(wǎng)
(1)因為
 
,所以△ADE∽△ABC.
(2)如圖1,當正方形DEFG的邊GF在BC上時,求正方形DEFG的邊長;
(3)設DE=x,△ABC與正方形DEFG重疊部分的面積為y.
①如圖2,當正方形DEFG在△ABC的內(nèi)部時,求y關于x的函數(shù)關系式,寫出x的取值范圍;
②如圖3,當正方形DEFG的一部分在△ABC的外部時,求y關于x的函數(shù)關系式,寫出x的取值范圍;
③當x為何值時,y有最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,E為DF上的一點,B為AC上的一點,∠1=∠2,∠C=∠D,試說明:AC∥DF.請?zhí)羁胀瓿赏评磉^程.(∵--因為,∴--所以)
解:∵∠1=∠2(已知)
∠1=∠3(
對頂角相等
對頂角相等

∴∠2=∠3(等量代換)
CE
CE
BD
BD
同位角相等,兩直線平行
同位角相等,兩直線平行

∴∠C=∠ABD(
兩直線平行,同位角相等
兩直線平行,同位角相等

又∵∠C=∠D(已知)
∴∠D=∠ABD(
等量代換
等量代換

∴AC∥DF(
內(nèi)錯角相等,兩直線平行
內(nèi)錯角相等,兩直線平行

查看答案和解析>>

同步練習冊答案