如圖,⊙O與AB切于點(diǎn)C,∠BCE=60°,DC=6,DE=4,則S△CDE為( 。
A.6
5
B.6
3
C.6
2
D.6

過C作CF⊥DE,交DE于點(diǎn)F,
∵AB與圓O相切,CE為圓O的弦,
∴∠CDE=∠BCE=60°,
在Rt△CDF中,DC=6,∠CDE=60°,
∴CF=DCsin60°=3
3

又DE=4,
則S△CDE=
1
2
DE•CF=6
3

故選B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,點(diǎn)E在斜邊AB上,以AE為直徑的⊙O與BC相切于點(diǎn)D.
(1)求證:AD平分∠BAC;
(2)若AD=2
3
,AE=4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,點(diǎn)C在以AB為直徑的半圓上,∠CAB的平分線AD交BC于點(diǎn)D,⊙O經(jīng)過A、D兩點(diǎn),且圓心O在AB上.
(1)求證:BD是⊙O的切線.
(2)若
AC
AB
=
1
4
,BC=4
5
,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知:△ABC內(nèi)接于⊙O,點(diǎn)D在OC的延長線上,∠B=∠D=30°.
(1)判斷AD與⊙O的位置關(guān)系,并說明理由;
(2)若AC=16,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1)正方形ABCD的邊長為2,點(diǎn)M是BC的中點(diǎn),P是線段MC上的一個(gè)動點(diǎn)(不運(yùn)動到點(diǎn)M,點(diǎn)C),以AB為直徑作⊙O,過點(diǎn)P作⊙O的切線交AD于點(diǎn)F,切點(diǎn)為E.
(1)求四邊形CDFP的周長;
(2)設(shè)BP=x,AF=y,求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍;
(3)延長DC,F(xiàn)P相交于點(diǎn)G,連接OE并延長交直線DC于H〔如圖(2)〕.問是否存在點(diǎn)P,使△EFO△EHG(其中△EFO頂點(diǎn)E、F、O與△EHG頂點(diǎn)E、H、G為對應(yīng)點(diǎn))?如果存在,試求(2)中x和y的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB是半圓的直徑,直線MN切半圓于點(diǎn)C,AM⊥MN,BN⊥MN,如果AM=a,BN=b,那么半圓的直徑為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知如圖:△ABC內(nèi)接于⊙O,P為BC邊延長線上的一點(diǎn),PA為⊙O的切線,切點(diǎn)為A,若PA=6,PC=4,求
sinB
sinACB
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知CD為⊙O的直徑,點(diǎn)A為DC延長線上一點(diǎn),B為⊙O上一點(diǎn),且∠ABC=∠D.
(1)求證:AB為⊙O的切線;
(2)若tanD=
1
2
,求sinA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,BC是⊙O的切線,D是⊙O上一點(diǎn),且ADOC.
(1)求證:△ADB△OBC;
(2)若AB=2,BC=
5
,求AD的長.(結(jié)果保留根號)

查看答案和解析>>

同步練習(xí)冊答案