22、如圖:以△ABC的邊AB、AC為邊分別向外作正方形ADEB、ACGF,連接DC、BF相交于M,DC、AB相交于N.
(1)從旋轉(zhuǎn)的角度看,△ADC是繞點(diǎn)
A
逆時(shí)針旋轉(zhuǎn)
90
度,可以得到△ABF.
(2)CD與BF有何關(guān)系?請(qǐng)說(shuō)明理由.
分析:(1)找準(zhǔn)一邊看清旋轉(zhuǎn)角度,兩個(gè)三角形的公共點(diǎn)為旋轉(zhuǎn)中心.
(2)DC=BF且DC⊥BF,可以利用△ADC≌△ABF(SAS)來(lái)證明相等,∠ABM+∠BNM=∠NMB=90°來(lái)證明垂直.
解答:解:(1)A,90(2分)
(2)DC=BF且DC⊥BF(4分)
理由:∵∠DAB=∠CAF=90°
∴∠DAC=∠BAF(等量加等量和相等)
又∵AD=ABAC=AF
∴△ADC≌△ABF(SAS)(6分)
∴∠AND=∠ABMDC=BF
又∵∠AND+∠DNA=90°
∴∠ABM+∠BNM=90°
∴∠NMB=90°
即DC⊥BF.(8分)
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì),解決此類(lèi)問(wèn)題的關(guān)鍵是正確的利用旋轉(zhuǎn)不變量.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、如圖,以△ABC的邊AB、AC為邊的等邊三角ABD和等邊三角形ACE,四邊形ADFE是平行四邊形.
(1)當(dāng)∠BAC滿足什么條件時(shí),四邊形ADFE是矩形;
(2)當(dāng)∠BAC滿足什么條件時(shí),平行四邊形ADFE不存在;
(3)當(dāng)△ABC分別滿足什么條件時(shí),平行四邊形ADFE是菱形,正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,以△ABC的邊AB為直徑作⊙O,交BC于D點(diǎn),交AC于E點(diǎn),BD=DE
(1)求證:△ABC是等腰三角形;
(2)若E是AC的中點(diǎn),求
BD
的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•峨眉山市二模)如圖,以△ABC的邊AB為直徑作⊙O,BC與⊙O交于D,D是BC的中點(diǎn),過(guò)D作DE⊥AC,交AC于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若AB=10,BD=8,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•黔東南州)如圖,以△ABC的邊BC為直徑作⊙O分別交AB,AC于點(diǎn)F.點(diǎn)E,AD⊥BC于D,AD交于⊙O于M,交BE于H.
求證:DM2=DH•DA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,以△ABC的邊AB為直徑的⊙O交AC于點(diǎn)D,弦DE∥AB,∠C=∠BAF
(1)求證:BC為⊙O的切線;
(2)若⊙O的半徑為5,AD=2
5
,求DE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案