已知經(jīng)過原點的拋物線y=-2x2+4x(如圖所示)與x的另一交點為A現(xiàn)將它向右平移m(m>0)位,所得拋物線與x軸交于C、D點,與原拋物線交于點P
(1)求點P的坐標(可用含m式子表示);
(2)設△PCD的面積為s,求s關于m關系式;
(3)過點P作x軸的平行線交原拋物線于點E,交平移后的拋物線于點F.請問是否存在m,使以點E、O、A、F為頂點的四邊形為平行四邊形?若存在,求出m的值;若不存在,請說明理由.

【答案】分析:(1)首先將拋物線表示出頂點式的形式,再進行平移,左加右減,即可得出答案;
(2)求出拋物線與x軸的交點坐標,根據(jù)當0<m<2,當m=2,即點P在x軸時,當m>2即點P在第四象限時,分別得出即可;
(3)根據(jù)E、O、A、F為頂點的四邊形是平行四邊形,則EF=OA=2由軸對稱可知PE=PF,表示出E點的坐標,再把點E代入拋物線解析式得出即可.
解答:解:(1)原拋物線:y=-2x2+4x=-2(x-1)2+2,
則平移后的拋物線為:y=-2(x-1-m)2+2,
由題得
解得,
∴點P的坐標為();

(2)拋物線:y=-2x2+4x=-2x(x-2)
∴拋物線與x軸的交點為O(0,0)A(2,0),
∴AO=2,
∵C、D兩點是拋物線y=-2x2+4x向右平移m(m>0)個,
單位所得拋物線與x軸的交點∴CD=OA=2,
①當0<m<2,即點P在第一象限時,如圖1,作PH⊥x軸于H.
∵P的坐標為(,),
∴PH=,
∴S=CD•2•(-m2+2)=-m2+2,
②當m=2,即點P在x軸時,△PCD不存在,
③當m>2即點P在第四象限時,如圖2,作PH⊥x軸于H.
∵P的坐標為(,),
∴PH=
∴S=CD•HP=×2×=m2-2;

(3)如圖3,若以E、O、A、F為頂點的四邊形是平行四邊形,則EF=OA=2
由軸對稱可知PE=PF,
∴PE=,
∵P(,),
∴點E的坐標為(,),
把點E代入拋物線解析式得:
解得:m=1.
點評:此題主要考查了二次函數(shù)解析式的頂點坐標求法以及平行四邊形的判定,題目綜合性較強,從題目問題開始逐步分析,是解決問題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知經(jīng)過原點的拋物線y=-2x2+4x與x軸的另一交點為A,現(xiàn)將它向右平移m(m>0)個單位,所得拋物線與x軸交于C、D兩點,與原拋物線交于點P.
(1)求點A的坐標,并判斷△PCA存在時它的形狀(不要求說理);
(2)在x軸上是否存在兩條相等的線段?若存在,請一一找出,并寫出它精英家教網(wǎng)們的長度(可用含m的式子表示);若不存在,請說明理由;
(3)設△CDP的面積為S,求S關于m的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知經(jīng)過原點的拋物線y=-2x2+4x(如圖所示)與x的另一交點為A現(xiàn)將它向精英家教網(wǎng)右平移m(m>0)位,所得拋物線與x軸交于C、D點,與原拋物線交于點P
(1)求點P的坐標(可用含m式子表示);
(2)設△PCD的面積為s,求s關于m關系式;
(3)過點P作x軸的平行線交原拋物線于點E,交平移后的拋物線于點F.請問是否存在m,使以點E、O、A、F為頂點的四邊形為平行四邊形?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年北京市密云縣九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

如圖,已知經(jīng)過原點的拋物線y=-2x2+4x與x軸的另一交點為A,現(xiàn)將它向右平移m(m>0)個單位,所得拋物線與x軸交于C、D兩點,與原拋物線交于點P.
(1)求點A的坐標,并判斷△PCA存在時它的形狀(不要求說理);
(2)在x軸上是否存在兩條相等的線段?若存在,請一一找出,并寫出它們的長度(可用含m的式子表示);若不存在,請說明理由;
(3)設△CDP的面積為S,求S關于m的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(28):20.5 二次函數(shù)的一些應用(解析版) 題型:解答題

如圖,已知經(jīng)過原點的拋物線y=-2x2+4x與x軸的另一交點為A,現(xiàn)將它向右平移m(m>0)個單位,所得拋物線與x軸交于C、D兩點,與原拋物線交于點P.
(1)求點A的坐標,并判斷△PCA存在時它的形狀(不要求說理);
(2)在x軸上是否存在兩條相等的線段?若存在,請一一找出,并寫出它們的長度(可用含m的式子表示);若不存在,請說明理由;
(3)設△CDP的面積為S,求S關于m的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年江西省中考數(shù)學試卷(解析版) 題型:解答題

(2010•江西)如圖,已知經(jīng)過原點的拋物線y=-2x2+4x與x軸的另一交點為A,現(xiàn)將它向右平移m(m>0)個單位,所得拋物線與x軸交于C、D兩點,與原拋物線交于點P.
(1)求點A的坐標,并判斷△PCA存在時它的形狀(不要求說理);
(2)在x軸上是否存在兩條相等的線段?若存在,請一一找出,并寫出它們的長度(可用含m的式子表示);若不存在,請說明理由;
(3)設△CDP的面積為S,求S關于m的關系式.

查看答案和解析>>

同步練習冊答案