【題目】已知:如圖,拋物線y ax2 - 2ax 3a x 軸正半軸于點(diǎn) A,負(fù)半軸于點(diǎn) B,交 y 軸于點(diǎn)C,tanOBC=3

(1) a 值;

(2)點(diǎn) P 為第一象限拋物線上一點(diǎn),連接 AC、PAPC,若點(diǎn) P 的橫坐標(biāo)為 t, PAC 的面積為S,求 St的函數(shù)解析式,(請直接寫出自變量 t 的取值范圍);

(3)在(2)的條件下,過點(diǎn) P PDy 軸交 CA 延長線于點(diǎn) D,連接 PB,交 y 軸于點(diǎn) E,點(diǎn) Q 為第二象限拋物線上一點(diǎn),連接 QE 并延長分別交 x 軸、拋物線于點(diǎn) NF,連接 FD,交 x 軸于點(diǎn) K ,當(dāng)E QF 的中點(diǎn)且 FN=FK 時(shí),求直線 DF 的解析式.

【答案】1;(2;(3

【解析】

1)由拋物線x軸相交,令,求出、,再根據(jù)求出點(diǎn)C的坐標(biāo),代入拋物線即可求出.

2)根據(jù)題意作圖,過點(diǎn)P軸分別交延長線、軸于點(diǎn),過點(diǎn)C延長線于點(diǎn)H,得出點(diǎn),再解出直線AC的解析式和PN的代數(shù)式,運(yùn)用三角形的面積公式即可求出 PAC的面積.

3)根據(jù)題意作圖,延長PD軸于點(diǎn)G,由題(2)可得,求出,得到,連接DE,得出四邊形EOGD是矩形,再根據(jù),得到,因而,再過點(diǎn)F,可得.過點(diǎn)QRE延長線于點(diǎn)H,得到,,,因而得出,再根據(jù)點(diǎn)F與點(diǎn)Q的坐標(biāo)代數(shù)式,求得、,即可求出直線DF解析式.

1)解:∵拋物線x軸相交,

∴令,,

解得:,

,,

,,

2)過點(diǎn)P軸分別交延長線、軸于點(diǎn),

過點(diǎn)C延長線于點(diǎn)H,點(diǎn)

解出直線AC的解析式,

,

3)延長PD軸于點(diǎn)G,

,,

,

,連接DE

∴四邊形EOGD是矩形,

,

,

,

過點(diǎn)F,

過點(diǎn)QRE延長線于點(diǎn)H,,,,

,,,

,,

,,(舍),

,,設(shè)直線DF的解析式為,

,

∴直線DF解析式為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB3,BC4,點(diǎn)EA邊上一點(diǎn),且AE,點(diǎn)F是邊BC上的任意一點(diǎn),把BEF沿EF翻折,點(diǎn)B的對應(yīng)點(diǎn)為G,連接AG,CG,則四邊形AGCD的面積的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于O,且ABO的直徑,ODAB,與AC交于點(diǎn)E,∠D=2∠A

(1)求證:CDO的切線;

(2)求證:DEDC;

(3)若OD=5,CD=3,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某地下停車庫入口的設(shè)計(jì)示意圖,已知ABBD,坡道AD的坡度i=12.4(指坡面的鉛直高度BD與水平寬度AB的比),AB=7.2 m,點(diǎn)CBD上,BC=0.4 m,CEAD.按規(guī)定,地下停車庫坡道口上方要張貼限高標(biāo)志,以便告知停車人車輛能否安全駛?cè),請根?jù)以上數(shù)據(jù),求出該地下停車庫限高CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個(gè)小正方形的邊長均為 1,線段 ABDE 的端點(diǎn) A、BD、E 均在小正方形的頂點(diǎn)上.

1)在圖中畫一個(gè)以 AB 為一腰的等腰△ABC, tan ABC ,點(diǎn)C 在小正方形的頂點(diǎn)上;

2)在圖中畫一個(gè)以 DE 為邊的平行四邊形 DEFG,且G 45° ,點(diǎn) F、G 均在小正方形的頂點(diǎn)上,連接 CG,請直接寫出線段 CG 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了慶祝中華人民共和國成立70周年,某市決定開展“我和祖國共成長”主題演講比賽,某中學(xué)將參加本校選拔賽的40名選手的成績(滿分為100分,得分為正整數(shù)且無滿分,最低為75)分成五組,并繪制了下列不完整的統(tǒng)計(jì)圖表.

分?jǐn)?shù)段

頻數(shù)

頻率

74.579.5

2

0.05

79.584.5

m

0.2

84.589.5

12

0.3

89.594.5

14

n

94.599.5

4

0.1

(1)表中m__________,n____________

(2)請?jiān)趫D中補(bǔ)全頻數(shù)直方圖;

(3)甲同學(xué)的比賽成績是40位參賽選手成績的中位數(shù),據(jù)此推測他的成績落在_________分?jǐn)?shù)段內(nèi);

(4)選拔賽中,成績在94.5分以上的選手,男生和女生各占一半,學(xué)校從中隨機(jī)確定2名選手參加全市決賽,請用列舉法或樹狀圖法求恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,已知ABAC,延長CD至點(diǎn)E,使CEBD,連結(jié)AE

1)求證:AD平分∠BDE;

2)若ABCD,求證:AE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在抗擊新冠肺炎疫情期間,老百姓越來越依賴電商渠道獲取必要的生活資料.小石經(jīng)營的水果店也適時(shí)加入了某電商平臺,并對銷售的水果中的部分(如下表)進(jìn)行促銷:參與促銷的水果免配送費(fèi)且一次購買水果的總價(jià)滿128元減元.每筆訂單顧客網(wǎng)上支付成功后,小石會得到支付款的80%

參與促銷水果

水果

促銷前單價(jià)

蘋果

58/

耙耙柑

70/

車?yán)遄?/span>

100/

火龍果

48/

1)當(dāng)時(shí),某顧客一次購買蘋果和車?yán)遄痈?/span>1箱,需要支付_____元,小石會得到______元;

2)在促銷活動中,為保障小石每筆訂單所得到的金額不低于促銷前總價(jià)的七折,則的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了了解本校學(xué)生采用何種方式上網(wǎng)查找所需要的學(xué)習(xí)資源,隨機(jī)抽取部分學(xué)生了解情況,并將統(tǒng)計(jì)結(jié)果繪制成頻數(shù)分布表及頻數(shù)分布直方圖.

1)頻數(shù)分布表中的值:_____________,______________

2)補(bǔ)全頻數(shù)分布直方圖;

3)若全校有1000名學(xué)生,估計(jì)該校利用搜索引擎上網(wǎng)查找學(xué)習(xí)資源的學(xué)生有多少名?

查看答案和解析>>

同步練習(xí)冊答案