學(xué)習(xí)了勾股定理的逆定理,我們知道:在一個(gè)三角形中,如果兩邊的平方和等于第三邊的平方,那么這個(gè)三角形為直角三角形.類(lèi)似地,我們定義:對(duì)于任意的三角形,設(shè)其三個(gè)角的度數(shù)分別為x°、y°和z°,若滿足x2+y2=z2,則稱這個(gè)三角形為勾股三角形.
(1)根據(jù)“勾股三角形”的定義,請(qǐng)你直接判斷命題:“直角三角形是勾股三角形”是真命題還是假命題?
(2)已知某一勾股三角形的三個(gè)內(nèi)角的度數(shù)從小到大依次為x°、y°和z°,且xy=2160,求x+y的值;
(3)如圖,△ABC內(nèi)接于⊙O,AB=
6
,AC=1+
3
,BC=2,⊙O的直徑BE交AC于點(diǎn)D.
①求證:△ABC是勾股三角形;
②求DE的長(zhǎng).
分析:(1)直接根據(jù)“勾股三角形”的定義,判斷得出即可;
(2)利用已知得出等量量關(guān)系組成方程組,進(jìn)而求出x+y的值;
(3)①過(guò)B作BH⊥AC于H,設(shè)AH=x,利用勾股定理首先得出AH=BH=
3
,HC=1,進(jìn)而得出∠A=45°,∠C=60°,∠B=75°,即可得出答案;
②過(guò)D作DK⊥AB于K,設(shè)KD=h,首先得出h+
3
h=
6
,進(jìn)而得出h的值,求出BD,進(jìn)而得出DE的長(zhǎng).
解答:解:(1)∵對(duì)于任意的三角形,設(shè)其三個(gè)角的度數(shù)分別為x°、y°和z°,若滿足x2+y2=z2,則稱這個(gè)三角形為勾股三角形,
∴無(wú)法得到,所有直角三角形是勾股三角形,故是假命題;

(2)由題意可得:
x+y+z=180
xy=2160
x2+y2=z2
,
解得:x+y=102;

(3)①證明:過(guò)B作BH⊥AC于H,設(shè)AH=x,
Rt△ABH中,BH=
6-x2
,
Rt△CBH中,(
6-x2
2+(1+
3
-x)2=4,
解得:x=
3
,
 所以,AH=BH=
3
,HC=1,
∴∠A=∠ABH=45°,
∴tan∠HBC=
CH
BH
=
1
3
=
3
3
,
∴∠HBC=30°,
∴∠BCH=60°,∠B=75°,
∴452+602=752
∴△ABC是勾股三角形;

②連接CE,
∵∠A=45°,
∴∠BEC=∠BAC=45°,
又∵BE是直徑,
∴∠BCE=90°,
∴BC=CE=2,
過(guò)D作DK⊥AB于K,設(shè)KD=h,
∵∠EBC=45°,∠ABC=75°,
∴∠ABE=30°,
BK=
3
h
,AK=h,
∴h+
3
h=
6
,
解得:h=
3
2
-
6
2

∴BD=2KD=2h=3
2
-
6
,
∴BE-BD=2
2
-(3
2
-
6
)=
6
-
2
點(diǎn)評(píng):此題主要考查了新定義以及多元方程組解法以及勾股定理和銳角三角函數(shù)關(guān)系,利用勾股定理得出AH,HC的長(zhǎng)是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

八年級(jí)三班小明和小亮同學(xué)學(xué)習(xí)了“勾股定理”之后,為了測(cè)得下圖風(fēng)箏CE的高度,他們進(jìn)行了如精英家教網(wǎng)下操作:
(1)測(cè)得BD的長(zhǎng)度為16米.
(2)根據(jù)手中剩余線的長(zhǎng)度計(jì)算出風(fēng)箏線BC的長(zhǎng)為63米.
(3)牽線放風(fēng)箏的小明身高1.6米.
求風(fēng)箏的高度CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、學(xué)習(xí)了勾股定理以后,有同學(xué)提出“在直角三角形中,三邊滿足a2+b2=c2,或許其他的三角形三邊也有這樣的關(guān)系”.讓我們來(lái)做一個(gè)實(shí)驗(yàn)!
(1)畫(huà)出任意一個(gè)銳角三角形,量出各邊的長(zhǎng)度(精確到1毫米),較短的兩條邊長(zhǎng)分別是a=
6
mm;b=
8
mm;較長(zhǎng)的一條邊長(zhǎng)c=
9
mm.比較=a2+b2
c2(填寫(xiě)“>”,“<”,或“=”);
(2)畫(huà)出任意的一個(gè)鈍角三角形,量出各邊的長(zhǎng)度(精確到1毫米),較短的兩條邊長(zhǎng)分別是a=
6
mm;b=
8
mm;較長(zhǎng)的一條邊長(zhǎng)c=
11
mm.比較a2+b2
c2(填寫(xiě)“>”,“<”,或“=”);
(3)根據(jù)以上的操作和結(jié)果,對(duì)這位同學(xué)提出的問(wèn)題,你猜想的結(jié)論是:
若△ABC是銳角三角形,則有a2+b2>c2
若△ABC是鈍角三角形,∠C為鈍角,則有a2+b2<c2
,類(lèi)比勾股定理的驗(yàn)證方法,相信你能說(shuō)明其能否成立的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某興趣小組在學(xué)習(xí)了勾股定理之后提出:“銳(鈍)角三角形有沒(méi)有類(lèi)似于勾股定理的結(jié)論”的問(wèn)題.首先定義了一個(gè)新的概念:如圖(1)△ABC中,M是BC的中點(diǎn),P是射線MA上的點(diǎn),設(shè)
APPM
=k,若∠BPC=90°,則稱k為勾股比.

(1)如圖(1),過(guò)B、C分別作中線AM的垂線,垂足為E、D.求證:CD=BE.
(2)①如圖(2),當(dāng)=1,且AB=AC時(shí),AB2+AC2=
2.5
2.5
BC2(填一個(gè)恰當(dāng)?shù)臄?shù)).
②如圖(1),當(dāng)k=1,△ABC為銳角三角形,且AB≠AC時(shí),①中的結(jié)論還成立嗎?若成立,請(qǐng)寫(xiě)出證明過(guò)程;若不成立,也請(qǐng)說(shuō)明理由;
③對(duì)任意銳角或鈍角三角形,如圖(1)、(3),請(qǐng)用含勾股比k的表達(dá)式直接表示AB2+AC2與BC2的關(guān)系(寫(xiě)出銳角或鈍角三角形中的一個(gè)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 華師大八年級(jí)版 2009-2010學(xué)年 第8期 總第164期 華師大版 題型:044

下面是數(shù)學(xué)課堂上的一個(gè)學(xué)習(xí)片段,閱讀后,請(qǐng)回答下面的問(wèn)題

學(xué)習(xí)了勾股定理的有關(guān)內(nèi)容后,張老師請(qǐng)同學(xué)們交流討論這樣一個(gè)問(wèn)題:“已知Rt△ABC的兩邊長(zhǎng)分別為3和4,請(qǐng)你求出第三邊長(zhǎng)的平方.”

同學(xué)們經(jīng)片刻的思考與交流后,李明同學(xué)舉手說(shuō):“第三邊長(zhǎng)的平方是25”;王華同學(xué)說(shuō):“第三邊長(zhǎng)的平方是7”.還有一些同學(xué)也提出了不同的看法

(1)假如你也在課堂上,你的意見(jiàn)如何?為什么?

(2)通過(guò)上面數(shù)學(xué)問(wèn)題的討論,你有什么感受?(用一句話表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案