【題目】若m、n是方程x2+6x﹣5=0的兩根,則3m+3n﹣2mn=

【答案】-8
【解析】解:∵m、n是方程x2+6x﹣5=0的兩根,
∴m+n=﹣6,mn=﹣5,
∴3m+3n﹣2mn=3(m+n)﹣2mn=3×(﹣6)﹣2×(﹣5)=﹣8.
故答案是:﹣8.
【考點精析】掌握求根公式是解答本題的根本,需要知道根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時,一元二次方程有2個不相等的實數(shù)根2、當(dāng)△=0時,一元二次方程有2個相同的實數(shù)根3、當(dāng)△<0時,一元二次方程沒有實數(shù)根.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九年級某班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查整理出某種商品在第x天(1≤x≤90,且x為整數(shù))的售價與銷售量的相關(guān)信息如下.已知商品的進(jìn)價為30/件,設(shè)該商品的售價為y(單位:元/件),每天的銷售量為p(單位:件),每天的銷售利潤為w(單位:元).

時間x(天)

1

30

60

90

每天銷售量p(件)

198

140

80

20

1)求出wx的函數(shù)關(guān)系式;

2)問銷售該商品第幾天時,當(dāng)天的銷售利潤最大?并求出最大利潤;

3)該商品在銷售過程中,共有多少天每天的銷售利潤不低于5600元?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ACB為銳角,點D為射線BC上一點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.如果AB=AC,∠BAC=90o

(1)當(dāng)點D在線段BC上時(與點B不重合),如圖2,線段CF 、BD所在直線的位

置關(guān)系為 __________,線段CF 、BD的數(shù)量關(guān)系為 ;

(2)當(dāng)點D在線段BC的延長線上時,如圖3,①中的結(jié)論是否仍然成立,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰△ABC中,AB=AC,∠BAC=50°,∠BAC的平分線與AB的垂直平分線交于點O、點C沿EF折疊后與點O重合,則∠CEF的度數(shù)是(
A.60°
B.55°
C.50°
D.45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程有兩個不相等的實數(shù)根.

1)求實數(shù)的取值范圍;

20可能是方程一個根嗎?若是,求出它的另一個根;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC三個頂點坐標(biāo)分別是A(1,3),B(4,1),C(4,4).
(1)請按要求畫圖: ①畫出△ABC向左平移5個單位長度后得到的△A1B1C1;
②畫出△ABC繞著原點O順時針旋轉(zhuǎn)90°后得到的△A2B2C2
(2)請寫出直線B1C1與直線B2C2的交點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點A(0,1),B(3,2),C(1,4)均在正方形網(wǎng)格的格點上.

(1)畫出△ABC關(guān)于x軸的對稱圖形△A1B1C1;
(2)將△A1B1C1向左平移3個單位后得到△A2B2C2 , 畫出△A2B2C2 , 并寫出頂點A2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠D=∠C=90°,E是DC的中點,AE平分∠DAB,∠DEA=28°,則∠ABE的度數(shù)是(
A.62
B.31
C.28
D.25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c在數(shù)軸上對應(yīng)點的位置如圖所示,化簡:|a|﹣|a+b|﹣ +|b﹣c|.

查看答案和解析>>

同步練習(xí)冊答案