如圖,兩條寬度均為40m的公路相交成α角,那么這兩條公路在相交處的公共部分(圖中陰影部分)的路面面積是( 。
A.
1600
sina
(m2
B.
1600
cosa
(m2
C.1600sina(m2D.600cosα(m2

如圖,α的對邊AC即為路寬40米,
即sinα=
40
斜邊
,
即斜邊=
40
sinα

又∵這兩條公路在相交處的公共部分(圖中陰影部分)是菱形,
∴路面面積=底邊×高=
40
sinα
×40=
1600
sinα

故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在Rt△ABC中,∠C=90°,∠A=30°,E為AB上一點(diǎn)且AE:EB=4:1,EF⊥AC于F,連接FB,則tan∠CFB的值等于______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在地面上一點(diǎn),測得電視塔尖的仰角為45°,沿水平方向再向塔底前行a米,又測得塔尖的仰角為60°,那么電視塔高為______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AB=5,BC=6,sinB=
3
5

求(1)△ABC的面積;(2)cotC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

同學(xué)們在學(xué)完解直角三角形的應(yīng)用后,某合作學(xué)習(xí)小組用測傾器、皮尺測量了學(xué)校旗桿的高度,他們設(shè)計了如下方案(如圖所示):
①在測點(diǎn)A處安置測傾器,測得旗桿頂部M的仰角∠MCE=30°;
②量出測點(diǎn)A到旗桿底部N的水平距離AN=20m;
③量出測傾器的高度AC=1m.
(1)根據(jù)上述測量數(shù)據(jù),即可求出旗桿的高度MN=______.(結(jié)果可以保留根號)
(2)如果測量工具不變,請仿照上述過程,設(shè)計一個測量某小山高度(如圖)的方案.要求:
(ⅰ)在圖中,畫出你測量小山高度MN的示意圖(標(biāo)上適當(dāng)字母);
(ⅱ)寫出你設(shè)計的方案.(測傾器的高度用h表示,其它涉及的長度用字母a、b、c…表示,涉及到的角度用α、β…表示,最后請給出計算MN的高度的式子).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在矩形ABCD中,E,F(xiàn),G,H分別為AB,BC,CD,DA的中點(diǎn),若AH:AE=4:3,四邊形EFGH的周長是40cm,則矩形ABCD的面積是______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,A、B、C三個村莊在一條東西走向的公路沿線上,AB=2km.在B村的正北方向有一個D村,測得∠DAB=45°,∠DCB=28°.今將△ACD區(qū)域進(jìn)行規(guī)劃,除其中面積為0.5km2的水塘外,準(zhǔn)備把剩余的一半作為綠化用地,試求綠化用地的面積.(結(jié)果精確到0.1km2,sin28°=0.4695,cos28°=0.8829,tan28°=0.5317,cot28°=1.88.8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)在Rt△ABC中,已知:∠C=90°,AC=2,BC=
5
,求∠A的正弦值.
(2)計算sin245°+cos245°-tan30°×sin60°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,如果△ABC中∠C是銳角,BC=a,AC=b.證明:S△ABC=
1
2
absinC.

查看答案和解析>>

同步練習(xí)冊答案