已知拋物線交y軸于點A,交x軸于點B,C(點B在點C的右側)。如圖,過點A作垂直于y軸的直線l. 在y軸右側、位于直線l下方的拋物線上任取一點P,過點P作直線PQ平行于y軸交直線l于點Q,交x軸于R,連接AP.

(1)求A,B,C三點的坐標;

(2)如果以A,P,Q三點構成的三角形與△AOC相似,求出點P的坐標;

(3)若將△APQ沿AP對折,點Q的對應點為點M. 是否存在點P,使得點M落在x軸上.若存在,求出點P的坐標;若不存在,請說明理由.

 

【答案】

(1)A(0,4),B(4,0),C(-1,0);(2),;(3) 

【解析】

試題分析:(1)分別求得拋物線與坐標軸的交點坐標即可得到結果;

(2)設,則,,分兩種情況分析即可得到結果;

(3)構造正方形PQEF,ME=OA=4,AM=AQ=x,則PM=,證得,根據(jù)相似三角形的性質可表示出PF,從而可以表示出CM,在中,根據(jù)勾股定理即可列方程求得結果.

(1)在中,

時,;

時,,解得

∴A(0,4),B(4,0),C(-1,0);

(2)設,則,

時,得,解得,此時 

時,得 ,解得,此時;

(3)如圖構造正方形PQEF,ME=OA=4,AM=AQ=x

PM=

證得   

,即,解得   

     

中,

.

考點:二次函數(shù)的綜合題

點評:本題知識點多,綜合性強,難度較大,一般是中考壓軸題,主要考查學生對二次函數(shù)的熟練掌握情況.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線交x軸于點A、點B,交y軸于點C,且點A(6,0),點C(0,4),AB=5OB,設點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形.
(1)求拋物線解析式及頂點坐標;
(2)求平行四邊形OEAF的面積S與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)當平行四邊形OEAF的面積為24時,請判斷平行四邊形OEAF是否為菱形?
(4)是否存在點E,使平行四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知拋物線交x軸于點A、點B,交y軸于點C,且點A(6,0),點C(0,4),AB=5OB,設點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形.
(1)求拋物線解析式及頂點坐標;
(2)求平行四邊形OEAF的面積S與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)當平行四邊形OEAF的面積為24時,請判斷平行四邊形OEAF是否為菱形?
(4)是否存在點E,使平行四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆浙江省杭州市上城區(qū)中考二模數(shù)學試卷(帶解析) 題型:解答題

已知拋物線交y軸于點A,交x軸于點B,C(點B在點C的右側).過點A作垂直于y軸的直線l. 在位于直線l下方的拋物線上任取一點P,過點P作直線PQ平行于y軸交直線l于點Q.連接AP.
(1)寫出A,B,C三點的坐標;
(2)若點P位于拋物線的對稱軸的右側:
①如果以A,P,Q三點構成的三角形與△AOC相似,求出點P的坐標;
②若將△APQ沿AP對折,點Q的對應點為點M.是否存在點P,使得點M落在x軸上.若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年浙江省杭州市上城區(qū)中考二模數(shù)學試卷(解析版) 題型:解答題

已知拋物線交y軸于點A,交x軸于點B,C(點B在點C的右側).過點A作垂直于y軸的直線l. 在位于直線l下方的拋物線上任取一點P,過點P作直線PQ平行于y軸交直線l于點Q.連接AP.

(1)寫出A,B,C三點的坐標;

(2)若點P位于拋物線的對稱軸的右側:

①如果以A,P,Q三點構成的三角形與△AOC相似,求出點P的坐標;

②若將△APQ沿AP對折,點Q的對應點為點M.是否存在點P,使得點M落在x軸上.若存在,求出點P的坐標;若不存在,請說明理由.

 

查看答案和解析>>

同步練習冊答案