【題目】如圖,在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E在AD上,BE的延長(zhǎng)線交AC于點(diǎn)F,且BF⊥AC,垂足為F,∠BAC=45°
求證:△AEF≌△BCF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=BC,AE是BC邊上的中線,過(guò)點(diǎn)C作CF⊥AE,垂足為F,過(guò)B作BD⊥BC交CF的延長(zhǎng)線于D;若AC=12cm,求BD的長(zhǎng);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)計(jì)算:(a-2)(a2+2a+4)= ,
(2x-y)(4x2+2xy+y2)= .
(2)上面的整式乘法計(jì)算結(jié)果很簡(jiǎn)單,由此又發(fā)現(xiàn)一個(gè)新的乘法公式: _________________________(請(qǐng)用含a、b的字母表示)
(3)下列各式能用你發(fā)現(xiàn)的乘法公式計(jì)算的是( 。
A.(a-3)(a2-3a+9) B.(2m-n)(2m2+2mn+n2)
C.(4-x)(16+4x+x2) D.(m-n)(m2+2mn+n2)
(4)直接用公式計(jì)算: =
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=30°,點(diǎn)M,N分別是射線OA,OB上的動(dòng)點(diǎn),OP平分∠AOB,且OP=6,△PMN的周長(zhǎng)最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸,y軸交于點(diǎn)A(10,0),B(0,-10),直線MT垂直于直線AB,垂足為M,與y軸交于點(diǎn)T(0,-2) .
(1)求點(diǎn)M的坐標(biāo);
(2)在線段MT的延長(zhǎng)線上找一點(diǎn)N,使MT=TN,求點(diǎn)N的坐標(biāo);
(3)若點(diǎn)D在x軸上,∠ABD=60°,E點(diǎn)在線段BD上運(yùn)動(dòng),∠AEB的平分線交AB于點(diǎn)P,∠EAB的平分線交線段BD于點(diǎn)Q,AQ與EP交于點(diǎn)R. 的值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,有一個(gè)等腰直角三角形AOB,∠OAB=90°,直角邊AO在x軸上,且AO=1.將Rt△AOB繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到等腰直角三角形A1OB1,且A1O=2AO,再將Rt△A1OB1繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到等腰三角形A2OB2,且A2O=2A1O……依此規(guī)律,得到等腰直角三角形A2 017OB2 017.則點(diǎn)B2 017的坐標(biāo)( 。
A. (22 017,-22 017) B. (22 016,-22 016) C. (22 017,22 017) D. (22 016,22 016)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,將一塊等腰直角三角板ABC放在第一象限,斜靠在兩條坐標(biāo)軸上,∠ACB=900,且A(0,4),點(diǎn)C(2,0),BE⊥x軸于點(diǎn)E,一次函數(shù)y=x+b經(jīng)過(guò)點(diǎn)B,交y軸于點(diǎn)D。
(1)求證;△AOC≌△CEB
(2)求△ABD的面積。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com