已知等腰三角形一個內(nèi)角的度數(shù)為30°,那么它的底角的度數(shù)是
 
°.
分析:由于不明確30°的角是等腰三角形的底角還是頂角,故應分30°的角是頂角和底角兩種情況討論.
解答:解:當30°的角為等腰三角形的頂角時,
底角的度數(shù)=
180°-30°
2
=75°;
當30°的角為等腰三角形的底角時,其底角為30°,
故它的底角的度數(shù)是30或75°.
故填30或75°.
點評:本題考查的是等腰三角形的性質(zhì)及三角形內(nèi)角和定理;解答此題時要注意30°的角是頂角和底角兩種情況,不要漏解,分類討論是正確解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,BC=20cm,P、Q、M、N分別從A、B、C、D出發(fā)沿AD,BC,CB,DA方向在矩形的邊上同時運動,當有一個點先到達所在運動邊的另一個端點時,運動即停止.已知在相同時間內(nèi),若BQ=xcm(x≠0),則AP=2xcm,CM=3xcm,DN=x2cm.
(1)當x為何值時,以PQ,MN為兩邊,以矩形的邊(AD或BC)的一部分為第三邊構(gòu)成一個三角形;
(2)當x為何值時,以P、Q、M、N為頂點的四邊形是平行四邊形;
(3)以P、Q、M、N為頂點的四邊形能否為等腰梯形?如果能,求x的值;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,BC=20cm,P,Q,M,N分別從A,B,C,D出發(fā)沿AD,BC,CB,DA方向在矩形的邊上同時運動,當有一個點先到達所在運動邊的另一個端點時,運動即停止.已知在相同時間內(nèi),若BQ=xcm(),則AP=2xcm,CM=3xcm,DN=x2cm.

(1)當x為何值時,以PQ,MN為兩邊,以矩形的邊(AD或BC)的一部分為第三邊構(gòu)成一個三角形;

(2)當x 為何值時,以P,Q,M,N為頂點的四邊形是平行四邊形;

(3)以P,Q,M,N為頂點的四邊形能否為等腰梯形?如果能,求x的值;如果不能,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,BC=20cm,P,Q,M,N分別從A,B,C,D出發(fā)沿AD,BC,CB,DA方向在矩形的邊上同時運動,當有一個點先到達所在運動邊的另一個端點時,運動即停止.已知在相同時間內(nèi),若BQ=xcm(),則AP=2xcm,CM=3xcm,DN=x2cm.

(1)當x為何值時,以PQ,MN為兩邊,以矩形的邊(AD或BC)的一部分為第三邊構(gòu)成一個三角形;
(2)當x 為何值時,以P,Q,M,N為頂點的四邊形是平行四邊形;
(3)以P,Q,M,N為頂點的四邊形能否為等腰梯形?如果能,求x的值;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年高級中等學校招生全國統(tǒng)一考試數(shù)學卷(山東淄博) 題型:解答題

如圖,在矩形ABCD中,BC=20cm,P,Q,M,N分別從A,B,C,D出發(fā)沿AD,BC,CB,DA方向在矩形的邊上同時運動,當有一個點先到達所在運動邊的另一個端點時,運動即停止.已知在相同時間內(nèi),若BQ=xcm(),則AP=2xcm,CM=3xcm,DN=x2cm.

(1)當x為何值時,以PQ,MN為兩邊,以矩形的邊(AD或BC)的一部分為第三邊構(gòu)成一個三角形;
(2)當x 為何值時,以P,Q,M,N為頂點的四邊形是平行四邊形;
(3)以P,Q,M,N為頂點的四邊形能否為等腰梯形?如果能,求x的值;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年安徽省潘集區(qū)初二第二次聯(lián)考數(shù)學卷 題型:解答題

如圖,在矩形ABCD中,BC=20cm,P,Q,M,N分別從A,B,C,D出發(fā)沿AD,BC,CB,DA方向在矩形的邊上同時運動,當有一個點先到達所在運動邊的另一個端點時,運動即停止.已知在相同時間內(nèi),若BQ=xcm(),則AP=2xcm,CM=3xcm,DN=x2cm.

(1)當x為何值時,以PQ,MN為兩邊,以矩形的邊(AD或BC)的一部分為第三邊構(gòu)成一個三角形;

(2)當x 為何值時,以P,Q,M,N為頂點的四邊形是平行四邊形;

(3)以P,Q,M,N為頂點的四邊形能否為等腰梯形?如果能,求x的值;如果不能,請說明理由.

 

查看答案和解析>>

同步練習冊答案